Gabriele Pergola's Avatar

Gabriele Pergola

@pergolagb.bsky.social

Assistant Professor in Natural Language Processing (NLP) at the University of Warwick, UK. Personal Webpage: https://warwick.ac.uk/fac/sci/dcs/people/u1898418/

155 Followers  |  834 Following  |  11 Posts  |  Joined: 19.11.2024  |  1.8006

Latest posts by pergolagb.bsky.social on Bluesky

2025 Workshop on AI for Multimedia Forensics & Disinformation Detection Workshop

🚨 Paper submission deadline extended! 🚨

🌟 You now have until Friday, Dec 6th to submit your work to the AI4MFDD 2025 Workshop on AI for Multimedia Forensics & Disinformation Detection.

πŸ“… WACV 2025, Feb 28–Mar 4, Tucson, AZ.
πŸ”— : shorturl.at/HHB3N

#AI #Forensics #DisinformationDetection

02.12.2024 16:12 β€” πŸ‘ 5    πŸ” 3    πŸ’¬ 0    πŸ“Œ 0
Preview
SciGisPy: a Novel Metric for Biomedical Text Simplification via Gist Inference Score Biomedical literature is often written in highly specialized language, posing significant comprehension challenges for non-experts. Automatic text simplification (ATS) offers a solution by making such...

πŸš€ Takeaway: SciGisPy is a novel library for domain-specific text evaluation, enabling automatic simplification (#ATS) for technical fields. Dive into the full details here: arxiv.org/abs/2410.09632. πŸ™Œ
#EMNLP #ACL #NLP #TextSimplification

28.11.2024 18:35 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

πŸ“Š Impactful Results:

- On the Cochrane biomedical dataset, SciGisPy correctly identifies simplified texts in 84% of cases, compared to 44.8% for SARI.
- Ablation studies confirm the contributions of semantic chunking, cohesion, and sentence-level measures.

28.11.2024 18:35 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

βš™οΈ Refined Metric Design: SciGisPy improves on GIS (Gist Inference Score) by:

- Removing indices unsuitable for biomedical contexts (e.g., word imageability).
- Adding metrics for sentence length & cohesion.
- Revising WordNet-based hypernym paths with domain-specific IC measures.

28.11.2024 18:35 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

🌟 What's new:
- Introduces semantic chunking to measure text coherence.
- Incorporates information content theory for better word specificity.
- Uses #biomedical embeddings (e.g., #BioWordVec, #BioSimCSE) to capture complex concepts.

28.11.2024 18:35 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

πŸ” What’s SciGisPy?: SciGisPy evaluates #gist inference - how well #simplified texts convey their essential meaning or core ideas.

Inspired by #Fuzzy-Trace Theory, it bridges linguistic simplicity with comprehension of critical content, especially for domain-specific texts.

28.11.2024 18:35 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

βš•οΈWhat if evaluation #metrics for text simplification focused on understanding the gist of biomedical texts?

We present β€œSciGisPy,” a gist-based metric for biomedical text evaluation.

πŸ“„: shorturl.at/dss4Z

#EMNLP2024 #nlp #nlpproc #biomedical #clinical #textsimplification #gist #metric #evaluation

28.11.2024 17:16 β€” πŸ‘ 4    πŸ” 1    πŸ’¬ 1    πŸ“Œ 0

πŸ“ Challenges & Solutions:

1️⃣ Balancing Accuracy & Simplicity: Agents are tuned to avoid oversimplification that loses key medical details

2️⃣ Time Complexity: Parallel processing and efficient feedback mechanisms minimize delays.

27.11.2024 17:36 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

πŸ”„ Interaction Loop:

The agents collaborate through an iterative refinement loop:
1️⃣ Propose: Agents generate initial simplifications independently.
2️⃣ Evaluate: Feedback is collected via scoring mechanisms.
3️⃣ Refine: Agents adjust simplifications based on collective input.

27.11.2024 17:35 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

πŸ€– Agent Roles in our framework:

1️⃣ Medical Terminology Simplifier: Simplifies technical jargon while preserving meaning.

2️⃣ Sentence Rewriter: Breaks down complex sentence structures.

3️⃣ Coherence Validator: Ensures text flow remains logical post-simplification.

27.11.2024 17:35 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸ”¬ The β€œSociety of Medical Simplifiers” builds on the idea that multiple specialized agents can collaborate to simplify medical texts. Each agent has a unique role, ensuring a balance between clarity and technical accuracy.
Here’s how it works: πŸ‘‡

27.11.2024 17:34 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Preview
Society of Medical Simplifiers Chen Lyu, Gabriele Pergola. Proceedings of the Third Workshop on Text Simplification, Accessibility and Readability (TSAR 2024). 2024.

🩺 What if #simplifying medical texts could be a collaborative effort among #agents?
See how our β€œSociety of Medical Simplifiers” makes it possible!

πŸ“„: aclanthology.org/2024.tsar-1.7/

#nlpproc #nlp #textsimplification #ats #biomedical #EMNLP2024

27.11.2024 17:34 β€” πŸ‘ 6    πŸ” 1    πŸ’¬ 1    πŸ“Œ 0

@pergolagb is following 20 prominent accounts