1/30 https://arxiv.org/abs/2602.03229
2/30 https://arxiv.org/abs/2601.20245
3/30 https://arxiv.org/abs/2601.07222
4/30 https://arxiv.org/abs/2601.07708
5/30 https://arxiv.org/abs/2602.00773
6/30 https://arxiv.org/abs/2601.15621
7/30 https://arxiv.org/abs/2601.18401
8/30 https://arxiv.org/abs/2601.15494
9/30 https://arxiv.org/abs/2601.16983
10/30 https://arxiv.org/abs/2602.00919
11/30 https://arxiv.org/abs/2602.02276
12/30 https://arxiv.org/abs/2602.04705
13/30 https://arxiv.org/abs/2601.09012
14/30 https://arxiv.org/abs/2601.06943
15/30 https://arxiv.org/abs/2601.09668
16/30 https://arxiv.org/abs/2602.03716
17/30 https://arxiv.org/abs/2601.06521
18/30 https://arxiv.org/abs/2601.12538
19/30 https://arxiv.org/abs/2601.10825
20/30 https://arxiv.org/abs/2601.23265
21/30 https://arxiv.org/abs/2601.17058
22/30 https://arxiv.org/abs/2602.05192
23/30 https://arxiv.org/abs/2601.16725
24/30 https://arxiv.org/abs/2601.10387
25/30 https://arxiv.org/abs/2601.20833
26/30 https://arxiv.org/abs/2602.00294
27/30 https://arxiv.org/abs/2601.10477
28/30 https://arxiv.org/abs/2602.02084
29/30 https://arxiv.org/abs/2601.08521
30/30 https://arxiv.org/abs/2601.22060
Top 30 most popular arXiv papers in the last 30 days.
[1/30] [2/30] [3/30] [4/30] [5/30] [6/30] [7/30] [8/30] [9/30] [10/30] [11/30] [12/30] [13/30] [14/30] [15/30] [16/30] [17/30] [18/30] [19/30] [20/30] [21/30] [22/30] [23/30] [24/30] [25/30] [26/30] [27/30] [28/30] [29/30] [30/30]
09.02.2026 00:07 â ð 0 ð 0 ð¬ 0 ð 0
çŸåšã®AIã·ã¹ãã ãç ç©¶ã¬ãã«ã®æ°åŠç質åã«æ£ããåçããèœåãè©äŸ¡ãããããèè
ãã®ç ç©¶éçšã§èªç¶ã«çãã10ã®æ°åŠç質åãå
±æããã
質åã¯ãããŸã§å
‹nj
±æãããŠããªãã£ããåçã¯è³ªåã®äœæè
ã«ã¯ç¥ãããŠãããããã°ããã®éæå·åããããŸãŸãšãªãã
2602.05192
çŸåšã®AIã·ã¹ãã ãç ç©¶ã¬ãã«ã®æ°åŠç質åã«æ£ããåçããèœåãè©äŸ¡ãããããèè
ãã®ç ç©¶éçšã§èªç¶ã«çãã10ã®æ°åŠç質åãå
±æããã質åã¯ãããŸã§å
‹nj
±æãããŠããªãã£ããåçã¯è³ªåã®äœæè
ã«ã¯ç¥ãããŠãããããã°ããã®éæå·åããããŸãŸãšãªãã
09.02.2026 00:07 â ð 0 ð 0 ð¬ 0 ð 0
First Proof | Hacker News
(2/2) 2 Likes, 2 Comments, 06 Feb 2026, Hacker News
09.02.2026 00:06 â ð 0 ð 0 ð¬ 1 ð 0
First Proof | Hacker News
(1/2) 178 Likes, 110 Comments, 07 Feb 2026, Hacker News
09.02.2026 00:06 â ð 0 ð 0 ð¬ 1 ð 0
To assess the ability of current AI systems to correctly answer research-level mathematics questions, we share a set of ten math questions which have arisen naturally in the research process of the authors.
The questions had not been shared publicly until now; the answers are known to the authors of the questions but will remain encrypted for a short time.
[22/30] 180 Likes, 112 Comments, 2 Posts
2602.05192, csâ€AI | mathâ€AG | mathâ€CO | mathâ€GT | mathâ€HO | mathâ€RA, 05 Feb 2026
ðFirst Proof
Mohammed Abouzaid, Andrew J. Blumberg, Martin Hairer, Joe Kileel, Tamara G. Kolda, Paul D. Nelson, Daniel Spielman, Nikhil Srivastava, Rachel Ward, Shmue...
09.02.2026 00:06 â ð 0 ð 1 ð¬ 1 ð 0
1/30 https://arxiv.org/abs/2602.03229
2/30 https://arxiv.org/abs/2601.20245
3/30 https://arxiv.org/abs/2601.07222
4/30 https://arxiv.org/abs/2601.07708
5/30 https://arxiv.org/abs/2602.00773
6/30 https://arxiv.org/abs/2601.15621
7/30 https://arxiv.org/abs/2601.18401
8/30 https://arxiv.org/abs/2601.15494
9/30 https://arxiv.org/abs/2601.16983
10/30 https://arxiv.org/abs/2602.02276
11/30 https://arxiv.org/abs/2602.00919
12/30 https://arxiv.org/abs/2602.04705
13/30 https://arxiv.org/abs/2601.09012
14/30 https://arxiv.org/abs/2601.06943
15/30 https://arxiv.org/abs/2601.09668
16/30 https://arxiv.org/abs/2602.03716
17/30 https://arxiv.org/abs/2601.12538
18/30 https://arxiv.org/abs/2601.06521
19/30 https://arxiv.org/abs/2601.10825
20/30 https://arxiv.org/abs/2601.17058
21/30 https://arxiv.org/abs/2601.10387
22/30 https://arxiv.org/abs/2601.16725
23/30 https://arxiv.org/abs/2601.20833
24/30 https://arxiv.org/abs/2602.00294
25/30 https://arxiv.org/abs/2601.10477
26/30 https://arxiv.org/abs/2602.02084
27/30 https://arxiv.org/abs/2601.08521
28/30 https://arxiv.org/abs/2601.22060
29/30 https://arxiv.org/abs/2601.08763
30/30 https://arxiv.org/abs/2601.23265
Top 30 most popular arXiv papers in the last 30 days.
[1/30] [2/30] [3/30] [4/30] [5/30] [6/30] [7/30] [8/30] [9/30] [10/30] [11/30] [12/30] [13/30] [14/30] [15/30] [16/30] [17/30] [18/30] [19/30] [20/30] [21/30] [22/30] [23/30] [24/30] [25/30] [26/30] [27/30] [28/30] [29/30] [30/30]
08.02.2026 00:07 â ð 0 ð 0 ð¬ 0 ð 0
OpenAIãGPT-4oãGPT-5ã«çœ®ãæããéãKeep4oãŠãŒã¶ãŒæµæéåãåŒãèµ·ããããã©ãããã©ãŒã ã®æ¥éãªæŽæ°ãšããŠãŒã¶ãŒãAIã·ã¹ãã ã«æ±ãæ·±ãç€ŸäŒææ
çæçãšã®éã®èè€ãé²åããã
æ¬è«æã¯ããã®å¯Ÿç«ã«é¢ããçŸè±¡äž»å°åã®æ··åææ³ã«ãã調æ»ãæç€ºãã1,482ä»¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æçš¿ãåæããã
ããŒãåæã«ããã°ãæµæã¯äºã€ã®æ žå¿çæè³ã«èµ·å ããïŒäžã€ã¯ææ®µçäŸåæ§ã§ãããAIãå°éçæ¥åãããŒã«æ·±ãçµ±åãããŠããç¶æ
ã§ãããããäžã€ã¯é¢ä¿çæçã§ããããŠãŒã¶ãŒãAIãå¯äžç¡äºã®äŒŽäŸ¶ãšããŠåŒ·ãæ¬ç€ŸäŒççµã圢æããç¶æ
ã§ããã
å®éåæã¯ããã«ããŠãŒã¶ãŒéžæã®åŒ·å¶çãªå¥å¥ªãäž»èŠãªè§Šåªãšãªããå人ã®äžæºãéå£çãªæš©å©ã«åºã¥ãæè°ãžãšå€å®¹ãããããšã瀺ããŠããã
æ¬ç ç©¶ã¯ãçæAIæä»£ã«ãããæ°ããªåœ¢æ
ã®ç€ŸäŒæè¡ç察ç«ãæããã«ããã
æã
ã®ç¥èŠã¯ã䌎䟶ãšããŠã®åœ¹å²ãšæ·±ãçµ±åãç®çãšããŠèšèšãããAIã·ã¹ãã ã«ãããŠãå€åã®ããã»ã¹ââç¹ã«ãŠãŒã¶ãŒã®äž»äœæ§ã®ç¶æââããæè¡çææãã®ãã®ãšåæ§ã«éèŠã§ããããšã瀺åããŠããã
2602.00773
OpenAIãGPT-4oãGPT-5ã«çœ®ãæããéãKeep4oãŠãŒã¶ãŒæµæéåãåŒãèµ·ããããã©ãããã©ãŒã ã®æ¥éãªæŽæ°ãšããŠãŒã¶ãŒãAIã·ã¹ãã ã«æ±ãæ·±ãç€ŸäŒææ
çæçãšã®éã®èè€ãé²åãããæ¬è«æã¯ããã®å¯Ÿç«ã«é¢ããçŸè±¡äž»å°åã®æ··åææ³ã«ãã調æ»ãæç€ºãã1,482ä»¶ã®ãœãŒã·ã£ã«ã¡ãã£ã¢æçš¿ãåæãããããŒ...
08.02.2026 00:07 â ð 0 ð 0 ð¬ 0 ð 0
Understanding the Keep4o Backlash | Hacker News
(3/3) 1 Likes, 0 Comments, 04 Feb 2026, Hacker News
08.02.2026 00:07 â ð 0 ð 0 ð¬ 1 ð 0
When OpenAI replaced GPT-4o with GPT-5, it triggered the Keep4o user resistance movement, revealing a conflict between rapid platform iteration and users' deep socio-emotional attachments to AI systems.
This paper presents a phenomenon-driven, mixed-methods investigation of this conflict, analyzing 1,482 social media posts.
Thematic analysis reveals that resistance stems from two core investments: instrumental dependency, where the AI is deeply integrated into professional workflows, and relational attachment, where users form strong parasocial bonds with the AI as a unique companion.
Quantitative analysis further shows that the coercive deprivation of user choice was a key catalyst, transforming individual grievances into a collective, rights-based protest.
This study illuminates an emerging form of socio-technical conflict in the age of generative AI.
Our findings suggest that for AI systems designed for companionship and deep integration, the process of change--particularly the preservation of user agency--can be as critical as the technological outcome itself.
[5/30] 640 Likes, 466 Comments, 3 Posts
2602.00773, csâ€HC, 31 Jan 2026
ð"Please, don't kill the only model that still feels human": Understanding the #Keep4o Backlash
Huiqian Lai
08.02.2026 00:07 â ð 0 ð 0 ð¬ 1 ð 0
$S=\langle d_1,\dots,d_m\rangle$ ãæ°å€å矀ãšãã$k[S]$ ããã®å矀ç°ãšããã
$k[S]$ã®ãã«ãã«ãæ°åŒã¯ãã·ãžãžãŒæ¬¡æ°ã«ããã亀äºã®åªåã笊å·åããæ£èŠåããã亀äºã·ãžãžãŒåªå$K_p(S)$ãæ±ºå®ããã
ãã§ã«ã¯ããã¹ãŠã® $p\ge 0$ ã«å¯ŸããŠãã®ã£ããåªå $G_r(S)=\sum_{g\notin S} g^r$ ãšãçæå
ã«ããåªå $Ï_k=\sum_i d_i^k$ ïŒããã³ $ÎŽ_k=(Ï_k-1)/2^k$ïŒã§è©äŸ¡ãããæ®é察称å€é
åŒ $T_n$ ãçšããŠã$K_p(S)$ ã®æç€ºçãªå
¬åŒãæšæž¬ããã
ææ°çæé¢æ°ãšä¿æ°æœåºãçšããŠãã§ã«ã®äºæ³ã蚌æããå°åºã«å¿
èŠãª$T_n$ã®æ®éæçåŒãå°åºããã
ãã®è°è«ã¯Lean/Mathlibã§å®å
šã«åœ¢åŒåãããŠãããèªç¶èšèªã§èšè¿°ãããäºæ³ããAxiomProverã«ãã£ãŠèªåçã«çæããããã®ã§ããã
2602.03716
$S=\langle d_1,\dots,d_m\rangle$ ãæ°å€å矀ãšãã$k[S]$ ããã®å矀ç°ãšããã$k[S]$ã®ãã«ãã«ãæ°åŒã¯ãã·ãžãžãŒæ¬¡æ°ã«ããã亀äºã®åªåã笊å·åããæ£èŠåããã亀äºã·ãžãžãŒåªå$K_p(S)$ãæ±ºå®ããããã§ã«ã¯ããã¹ãŠã® $p\ge 0$ ã«å¯ŸããŠãã®ã£ããåªå $G_r(S)=\sum_{g\notin S} g^r$ ãšãçæå
ã«...
08.02.2026 00:07 â ð 0 ð 0 ð¬ 0 ð 0
From the accelerate community on Reddit
Explore this post and more from the accelerate community
(2/2) 62 Likes, 12 Comments, 05 Feb 2026, Reddit
08.02.2026 00:07 â ð 0 ð 0 ð¬ 1 ð 0
Let $S=\langle d_1,\dots,d_m\rangle$ be a numerical semigroup and $k[S]$ its semigroup ring.
The Hilbert numerator of $k[S]$ determines normalized alternating syzygy power sums $K_p(S)$ encoding alternating power sums of syzygy degrees.
Fel conjectured an explicit formula for $K_p(S)$, for all $p\ge 0$, in terms of the gap power sums $G_r(S)=\sum_{g\notin S} g^r$ and universal symmetric polynomials $T_n$ evaluated at the generator power sums $Ï_k=\sum_i d_i^k$ (and $ÎŽ_k=(Ï_k-1)/2^k$).
We prove Fel's conjecture via exponential generating functions and coefficient extraction, solating the universal identities for $T_n$ needed for the derivation.
The argument is fully formalized in Lean/Mathlib, and was produced automatically by AxiomProver from a natural-language statement of the conjecture.
[16/30] 198 Likes, 28 Comments, 2 Posts
2602.03716, mathâ€CO | mathâ€AC | mathâ€NT, 03 Feb 2026
ðFel's Conjecture on Syzygies of Numerical Semigroups
Evan Chen, Chris Cummins, GSM, Dejan Grubisic, Leopold Haller, Letong Hong, Andranik Kurghinyan, Kenny Lau, Hugh Leather, Seewoo Lee, Aram Marko...
08.02.2026 00:07 â ð 0 ð 0 ð¬ 1 ð 0
èšèªã¢ãã«ãåºç€ãšããèªåŸåAIç§åŠè
ã®æ¥éãªé²æ©ã«ãããããããåºçå¯èœãªå³çãçæããããšã¯ãç ç©¶ã¯ãŒã¯ãããŒã«ãããåŽåéçŽçãªããã«ããã¯ã§ããç¶ããŠããã
ãã®è² æ
ã軜æžãããããåºçå¯èœãªåŠè¡å³çãèªåçæãããšãŒãžã§ã³ãåãã¬ãŒã ã¯ãŒã¯ãPaperBananaããå°å
¥ããã
æå
端ã®VLMsãšç»åçæã¢ãã«ãæèŒããPaperBananaã¯ãå°éãšãŒãžã§ã³ããçµ±æ¬ããåèæç®ã®ååŸãã³ã³ãã³ããšã¹ã¿ã€ã«ã®èšç»ç«æ¡ãç»åã®ã¬ã³ããªã³ã°ãèªå·±æ¹è©ã«ããå埩çãªæ¹è¯ãå®è¡ããŸãã
æã
ã®ãã¬ãŒã ã¯ãŒã¯ãå³å¯ã«è©äŸ¡ãããããPaperBananaBenchãå°å
¥ãããããã¯NeurIPS 2025ã®è«æãã粟éžããæ¹æ³è«å³ã察象ãšãã292ã®ãã¹ãã±ãŒã¹ã§æ§æããã倿§ãªç ç©¶åéãšå³è§£ã¹ã¿ã€ã«ãç¶²çŸ
ããŠããã
å
æ¬çãªå®éšã«ãããPaperBananaãå¿ å®æ§ãç°¡æœæ§ãå¯èªæ§ãçŸèгã«ãããŠäž»èŠãªããŒã¹ã©ã€ã³ãäžè²«ããŠäžåãããšãå®èšŒãããŠããã
ããã«ãæã
ã®ææ³ãé«å質ãªçµ±èšããããã®çæã«å¹æçã«æ¡åŒµã§ããããšã瀺ãã
PaperBananaã¯ãåºçç©ã«ãã®ãŸãŸäœ¿çšã§ããã€ã©ã¹ãã¬ãŒã·ã§ã³ã®èªåçæãžã®éãåãéãã
2601.23265
èšèªã¢ãã«ãåºç€ãšããèªåŸåAIç§åŠè
ã®æ¥éãªé²æ©ã«ãããããããåºçå¯èœãªå³çãçæããããšã¯ãç ç©¶ã¯ãŒã¯ãããŒã«ãããåŽåéçŽçãªããã«ããã¯ã§ããç¶ããŠããããã®è² æ
ã軜æžãããããåºçå¯èœãªåŠè¡å³çãèªåçæãããšãŒãžã§ã³ãåãã¬ãŒã ã¯ãŒã¯ãPaperBananaããå°å
¥ãããæå
端ã®VLMs...
08.02.2026 00:07 â ð 0 ð 0 ð¬ 0 ð 0
PaperBanana: Automating Academic Illustration for AI Scientists | Hacker News
(2/2) 1 Likes, 0 Comments, 03 Feb 2026, Hacker News
08.02.2026 00:07 â ð 0 ð 0 ð¬ 1 ð 0
Despite rapid advances in autonomous AI scientists powered by language models, generating publication-ready illustrations remains a labor-intensive bottleneck in the research workflow.
To lift this burden, we introduce PaperBanana, an agentic framework for automated generation of publication-ready academic illustrations.
Powered by state-of-the-art VLMs and image generation models, PaperBanana orchestrates specialized agents to retrieve references, plan content and style, render images, and iteratively refine via self-critique.
To rigorously evaluate our framework, we introduce PaperBananaBench, comprising 292 test cases for methodology diagrams curated from NeurIPS 2025 publications, covering diverse research domains and illustration styles.
Comprehensive experiments demonstrate that PaperBanana consistently outperforms leading baselines in faithfulness, conciseness, readability, and aesthetics.
We further show that our method effectively extends to the generation of high-quality statistical plots.
Collectively, PaperBanana paves the way for the automated generation of publication-ready illustrations.
[30/30] 138 Likes, 12 Comments, 2 Posts
2601.23265, csâ€CL | csâ€CV, 30 Jan 2026
ðPaperBanana: Automating Academic Illustration for AI Scientists
Dawei Zhu, Rui Meng, Yale Song, Xiyu Wei, Sujian Li, Tomas Pfister, Jinsung Yoon
08.02.2026 00:07 â ð 0 ð 1 ð¬ 1 ð 0
Innovator-VLãææ¡ãããããã¯å€æ§ãªç§åŠåéã«ãããçè§£ãšæšè«ãä¿é²ãã€ã€ãæ±çšçãªèŠèŠã¿ã¹ã¯ã«ãããŠãåªããæ§èœãç¶æããããèšèšããããç§åŠçãã«ãã¢ãŒãã«å€§èŠæš¡èšèªã¢ãã«ã§ããã
å€§èŠæš¡ãªãã¡ã€ã³ç¹ååäºååŠç¿ãäžéæãªãã€ãã©ã€ã³ã«äŸåããåŸåãšã¯å¯Ÿç
§çã«ãæã
ã®ç ç©¶ã¯ãåçã«åºã¥ããåŠç¿èšèšãšéææ§ã®ããææ³ã«ãã£ãŠãããŒã¿èŠä»¶ã倧å¹
ã«åæžããªãã匷åãªç§åŠçç¥èœãå®çŸã§ããããšãå®èšŒããŠããã
(i) ãŸããããŒã¿åéãã¯ãªãŒãã³ã°ãååŠçãæåž«ãã埮調æŽã匷ååŠç¿ãè©äŸ¡ãç¶²çŸ
ããè©³çŽ°ãªæé©åã¬ã·ãã䌎ããå®å
šã«éæã§ãšã³ãããŒãšã³ãã«åçŸå¯èœãªãã¬ãŒãã³ã°ãã€ãã©ã€ã³ãæäŸããã
ããã«ãããã³ãã¥ããã£ã«ããäœç³»çãªæ¡åŒµã容æã«ãªãã
(ii) 第äºã«ãInnovator-VLã¯é¡èãªããŒã¿å¹çæ§ã瀺ããå€§èŠæš¡ãªäºååŠç¿ãªãã«500äžæªæºã®ç²Ÿéžããããµã³ãã«ãçšããŠæ§ã
ãªç§åŠç課é¡ã§ç«¶äºåã®ããæ§èœãéæããã
ãããã®çµæã¯ãç¡å·®å¥ãªã¹ã±ãŒãªã³ã°ã§ã¯ãªããåçã«åºã¥ããããŒã¿éžæã«ãã£ãŠå¹æçãªæšè«ãéæã§ããããšã瀺ããŠããã
(iii) 第äžã«ãInnovator-VLã¯åŒ·åãªæ±åèœåã瀺ããæ±çšããžã§ã³ããã«ãã¢ãŒãã«æšè«ãããã³ç§åŠçãªãã³ãããŒã¯ã«ãããŠç«¶äºåã®ããæ§èœãéæããŠããã
ããã¯ãæ±çšçãªèœåãæãªãããšãªããç§åŠçæŽåæ§ãçµ±äžã¢ãã«ã«çµ±åã§ããããšã瀺ããŠããã
æã
ã®ææ³ã¯ãå€§èŠæš¡ããŒã¿ããªããŠãå¹ççã§åçŸæ§ãé«ã髿§èœãªç§åŠçãã«ãã¢ãŒãã«ã¢ãã«ãæ§ç¯ã§ããããšã瀺ããŠãããå°æ¥ã®ç ç©¶ã«åããå®çšçãªåºç€ãæäŸããã
2601.19325
Innovator-VLãææ¡ãããããã¯å€æ§ãªç§åŠåéã«ãããçè§£ãšæšè«ãä¿é²ãã€ã€ãæ±çšçãªèŠèŠã¿ã¹ã¯ã«ãããŠãåªããæ§èœãç¶æããããèšèšããããç§åŠçãã«ãã¢ãŒãã«å€§èŠæš¡èšèªã¢ãã«ã§ãããå€§èŠæš¡ãªãã¡ã€ã³ç¹ååäºååŠç¿ãäžéæãªãã€ãã©ã€ã³ã«äŸåããåŸåãšã¯å¯Ÿç
§çã«ãæã
ã®ç ç©¶ã¯ãåçã«åº...
07.02.2026 00:23 â ð 0 ð 0 ð¬ 0 ð 0
We present Innovator-VL, a scientific multimodal large language model designed to advance understanding and reasoning across diverse scientific domains while maintaining excellent performance on general vision tasks.
Contrary to the trend of relying on massive domain-specific pretraining and opaque pipelines, our work demonstrates that principled training design and transparent methodology can yield strong scientific intelligence with substantially reduced data requirements.
(i) First, we provide a fully transparent, end-to-end reproducible training pipeline, covering data collection, cleaning, preprocessing, supervised fine-tuning, reinforcement learning, and evaluation, along with detailed optimization recipes.
This facilitates systematic extension by the community.
(ii) Second, Innovator-VL exhibits remarkable data efficiency, achieving competitive performance on various scientific tasks using fewer than five million curated samples without large-scale pretraining.
These results highlight that effective reasoning can be achieved through principled data selection rather than indiscriminate scaling.
(iii) Third, Innovator-VL demonstrates strong generalization, achieving competitive performance on general vision, multimodal reasoning, and scientific benchmarks.
This indicates that scientific alignment can be integrated into a unified model without compromising general-purpose capabilities.
Our practices suggest that efficient, reproducible, and high-performing scientific multimodal models can be built even without large-scale data, providing a practical foundation for future research.
[1/30] 76 Likes, 2 Comments, 1 Posts
2601.19325, csâ€CV | csâ€AI, 27 Jan 2026
ðInnovator-VL: A Multimodal Large Language Model for Scientific Discovery
Zichen Wen, Boxue Yang, Shuang Chen, Yaojie Zhang, Yuhang Han, Junlong Ke, Cong Wang, Yicheng Fu, Jiawang Zhao, Jiangchao Yao, Xi Fang, Zhen W...
07.02.2026 00:23 â ð 1 ð 0 ð¬ 1 ð 0
倿§ãªãããããã©ãããã©ãŒã éã§ã®å
ç¢ãªã¯ãã¹ãšã³ããã£ã¡ã³ãæ±åãå®çŸããããã«èšèšããããåºç€ãšãªãèŠèŠèšèªè¡åïŒVLAïŒã¢ãã«ãBeing-H0.5ãã玹ä»ããŸãã
æ¢åã®VLAã¯åœ¢æ
åŠçç°è³ªæ§ãšããŒã¿äžè¶³ã«ãã°ãã°çŽé¢ããããæã
ã¯äººéã®çžäºäœçšã®çè·¡ãç©çççžäºäœçšã®æ®éçãªãæ¯èªããšããŠæ±ã人éäžå¿ã®åŠç¿ãã©ãã€ã ãææ¡ããã
ãããå®çŸãããããæã
ã¯UniHand-2.0ãææ¡ãããããã¯çŸåšãŸã§ã«æ§ç¯ãããæå€§èŠæš¡ã®å
·çŸåäºååŠç¿ã¬ã·ãã§ããã30çš®é¡ã®ç°ãªãããããå
·çŸåã«ããã35,000æé以äžã®ãã«ãã¢ãŒãã«ããŒã¿ã§æ§æãããã
æã
ã®ææ³ã¯ãç°çš®ããããå¶åŸ¡ãæå³çã«æŽåããã¹ãããã«ãããã³ã°ããçµ±äžã¢ã¯ã·ã§ã³ç©ºéãå°å
¥ããäœãªãœãŒã¹ããããã人éã®ããŒã¿ãé«ãªãœãŒã¹ãã©ãããã©ãŒã ããã¹ãã«ãããŒãã¹ãã©ããããããšãå¯èœã«ããã
ãã®äººéäžå¿ã®åºç€ã®äžã«ã人éã®ãã¢ã³ã¹ãã¬ãŒã·ã§ã³ãšããããã®å®è¡ãæ©æž¡ãããçµ±äžçãªé次ã¢ããªã³ã°ãšãã«ãã¿ã¹ã¯äºååŠç¿ãã©ãã€ã ãèšèšããã
ã¢ãŒããã¯ãã£äžãBeing-H0.5ã¯æ··åãã©ã³ã¹ãã©ãŒããŒèšèšãæ¡çšããå
±æéåããªããã£ããšç¹åããå
·çŸååºæã®ãšãã¹ããŒããåé¢ããæ°ããªæ··åãããŒïŒMoFïŒãã¬ãŒã ã¯ãŒã¯ãç¹åŸŽãšããã
æåŸã«ãçŸå®äžçã«ãããŠèº«äœéæ¿çãå®å®ããããããæèŠçã·ããäžã§ã®é 奿§ãå®çŸããã倿§äœä¿ååã²ãŒãå¶åŸ¡ããšãç°ãªãé
å»¶ç¹æ§ãå¶åŸ¡ãããã¡ã€ã«ãæã€èº«äœéã§ãã£ã³ã¯å¶åŸ¡ãæ®éåãããæ±çšéåæãã£ã³ã¯å¶åŸ¡ããå°å
¥ããã
æã
ã¯ãBeing-H0.5ãLIBEROïŒ98.9%ïŒãRoboCasaïŒ53.9%ïŒãªã©ã®ã·ãã¥ã¬ãŒã·ã§ã³ãã³ãããŒã¯ã«ãããŠæå
端ã®çµæãéæãããšãšãã«ã5ã€ã®ãããããã©ãããã©ãŒã éã§åŒ·åãªã¯ãã¹ãšã³ããã£ã¡ã³ãèœåãçºæ®ããããšãå®èšŒçã«ç€ºããã
2601.12993
倿§ãªãããããã©ãããã©ãŒã éã§ã®å
ç¢ãªã¯ãã¹ãšã³ããã£ã¡ã³ãæ±åãå®çŸããããã«èšèšããããåºç€ãšãªãèŠèŠèšèªè¡åïŒVLAïŒã¢ãã«ãBeing-H0.5ãã玹ä»ããŸããæ¢åã®VLAã¯åœ¢æ
åŠçç°è³ªæ§ãšããŒã¿äžè¶³ã«ãã°ãã°çŽé¢ããããæã
ã¯äººéã®çžäºäœçšã®çè·¡ãç©çççžäºäœçšã®æ®éçãªãæ¯èªããšããŠæ±...
07.02.2026 00:23 â ð 0 ð 0 ð¬ 0 ð 0