Felix Wagner's Avatar

Felix Wagner

@felwag.bsky.social

PhD student at University of Oxford πŸ’» Computer Vision for Medicine | Federated Learning πŸ–₯οΈπŸ‘¨β€πŸ’»

18 Followers  |  83 Following  |  13 Posts  |  Joined: 19.11.2024  |  1.8492

Latest posts by felwag.bsky.social on Bluesky

πŸ™ Thanks to my supervisor Prof. @kostaskamnitsas.bsky.social and co-authors @psaha.bsky.social, @harryanthony.bsky.social, Prof. Alison Noble

Excited to present at @neuripsconf.bsky.social - code coming soon!
@ox.ac.uk
@oxengsci.bsky.social

#OOD #ComputerVision #AI #ML #Research

20.09.2025 08:28 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

Tested on 12 OOD tasks across 🧴dermatology, 🩻 chest X-ray, ultrasound & πŸ”¬ histopathology.
πŸ’₯ DIsoN consistently performs strongly against state-of-the-art methods, with higher AUROC and fewer false positives.

Attention bad pun: 🧹 DIsoN cleans up OOD samples like a Dyson πŸ’¨

20.09.2025 08:28 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

BUT here's the key:
Only model parameters are exchanged between training + deployment, no raw data leaves the training site.

We also add a class-conditional extension (CC-DIsoN):
Compare each test sample only to training samples of its predicted class β†’ stronger OOD performance

20.09.2025 08:28 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

DIsoN enables comparing a test sample with the training data distribution, without data transfer!

How?
πŸ”‘ We train a binary classifier per test sample to β€œisolate” it from training data.
πŸ“ˆ The more training steps needed β†’ the more likely the sample is in-distribution.

20.09.2025 08:28 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

In medical imaging, safe deployment isn’t just about accuracy.

⚠️ Models must flag unusual scans (artifacts, rare conditions) so clinicians can double-check.

But there’s a problem:
πŸ“¦ Training data is often private, large, and unavailable after deployment.

20.09.2025 08:28 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

Whoop #NeurIPS2025 accepted! πŸŽ‰
Meet DIsoN, our πŸ§ΉπŸ’¨ privacy-preserving OOD detector that compares test samples to training data without ever sharing the training data.

We make Out-of-Distribution detection decentralized!

πŸ“„Paper: arxiv.org/pdf/2506.09024
πŸ§΅πŸ‘‡

20.09.2025 08:28 β€” πŸ‘ 6    πŸ” 2    πŸ’¬ 1    πŸ“Œ 1

The paper will be presented at @wacvconference.bsky.social on March 1 in Arizona🌡
@ox.ac.uk
I am happy that my first post on πŸ¦‹ are so exciting news! πŸŽ‰
#MedicalImaging #FL #AI #WACV25

27.01.2025 19:11 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Big thank you to my supervisor @kostaskamnitsas.bsky.social and my co-authors: @psaha.bsky.social Wentian Xu Ziyun Liang Daniel Whitehouse Whitehouse David Menon Virginia Newcombe Natalie Voets J Alison Noble

27.01.2025 19:11 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

This is the first time we’ve demonstrated that FL can train a single 3D segmentation model for decentralized MRI datasets each with:
🧠 Different brain diseases
πŸ“· Varying MRI modalities

A step forward in training large foundation models for multi-modal MRIs πŸ™Œ

27.01.2025 19:11 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

πŸ† Our results: FedUniBrain was evaluated on 7 MRI datasets with 5 brain diseases.
πŸ“Š It achieved promising results across all diseases during training!

Even better, it generalizes to new datasets with unseen modality combinations, something traditional methods fail to do.

27.01.2025 19:11 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

We propose the FedUniBrain framework: Train a single model across decentralized MRI datasets with:
βœ”οΈ Different brain diseases per dataset
βœ”οΈ Different modality combinations per dataset
βœ”οΈ No data sharing

27.01.2025 19:11 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

Traditional brain segmentation models are disease-specific and rely on predefined MRI modalities for both training and inference. They can’t handle other diseases or scans with different input modalities🚫Plus, patient privacy prevents the creation of big centralized databases🧠

27.01.2025 19:11 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸš€Excited to share our latest work: 🧠FedUniBrain Framework, a necessary step towards training foundation models for multimodal MRIs with Federated Learning, accepted at #WACV25 and selected for an oral!

πŸ”— arXiv: arxiv.org/pdf/2406.11636
πŸ’» GitHub: github.com/FelixWag/Fed...
🧡1/N

27.01.2025 19:11 β€” πŸ‘ 3    πŸ” 0    πŸ’¬ 1    πŸ“Œ 1

@felwag is following 20 prominent accounts