arXiv stat.ME Methodology's Avatar

arXiv stat.ME Methodology

@statme-bot.bsky.social

Unofficial bot by @vele.bsky.social w/ http://github.com/so-okada/bXiv https://arxiv.org/list/stat.ME/new List https://bsky.app/profile/vele.bsky.social/lists/3lim7ccweqo2j ModList https://bsky.app/profile/vele.bsky.social/lists/3lim3qnexsw2g

39 Followers  |  1 Following  |  8,880 Posts  |  Joined: 08.02.2025  |  1.3348

Latest posts by statme-bot.bsky.social on Bluesky

Abhik Ghosh, Suryasis Jana: Provably robust learning of regression neural networks using $\beta$-divergences https://arxiv.org/abs/2602.08933 https://arxiv.org/pdf/2602.08933 https://arxiv.org/html/2602.08933

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 3    πŸ’¬ 0    πŸ“Œ 0

Rohan Hore, Ruodu Wang, Aaditya Ramdas: Online monotone density estimation and log-optimal calibration https://arxiv.org/abs/2602.08927 https://arxiv.org/pdf/2602.08927 https://arxiv.org/html/2602.08927

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0

Xiaotong Liu, Shao-Bo Lin, Jun Fan, Ding-Xuan Zhou: Two-Stage Data Synthesization: A Statistics-Driven Restricted Trade-off between Privacy and Prediction https://arxiv.org/abs/2602.08657 https://arxiv.org/pdf/2602.08657 https://arxiv.org/html/2602.08657

10.02.2026 06:36 β€” πŸ‘ 0    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0

Yash Patel, Ambuj Tewari: Distribution-Free Robust Functional Predict-Then-Optimize https://arxiv.org/abs/2602.08215 https://arxiv.org/pdf/2602.08215 https://arxiv.org/html/2602.08215

10.02.2026 06:35 β€” πŸ‘ 0    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0

Cristian Minoccheri, Sophia Tesic, Kayvan Najarian, Ryan Stidham: A Causal Machine Learning Framework for Treatment Personalization in Clinical Trials: Application to Ulcerative Colitis https://arxiv.org/abs/2602.08171 https://arxiv.org/pdf/2602.08171 https://arxiv.org/html/2602.08171

10.02.2026 06:35 β€” πŸ‘ 0    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0

Tran, Nguyen, Bashar, Ho, Nayak, Drovandi: Fast Model Selection and Stable Optimization for Softmax-Gated Multinomial-Logistic Mixture of Experts Models https://arxiv.org/abs/2602.07997 https://arxiv.org/pdf/2602.07997 https://arxiv.org/html/2602.07997

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 4    πŸ’¬ 0    πŸ“Œ 0

Kim, Parmar, Wallis, Miculicich, Jung, Dvijotham, Le, Pfister: CausalArmor: Efficient Indirect Prompt Injection Guardrails via Causal Attribution https://arxiv.org/abs/2602.07918 https://arxiv.org/pdf/2602.07918 https://arxiv.org/html/2602.07918

10.02.2026 06:30 β€” πŸ‘ 0    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0

Huiyang Yi, Xiaojian Shen, Yonggang Wu, Duxin Chen, He Wang, Wenwu Yu: CausalCompass: Evaluating the Robustness of Time-Series Causal Discovery in Misspecified Scenarios https://arxiv.org/abs/2602.07915 https://arxiv.org/pdf/2602.07915 https://arxiv.org/html/2602.07915

10.02.2026 06:34 β€” πŸ‘ 0    πŸ” 3    πŸ’¬ 0    πŸ“Œ 0

Yufei Zhang, Zhihao Ma: Digital exclusion among middle-aged and older adults in China: age-period-cohort evidence from three national surveys, 2011-2022 https://arxiv.org/abs/2602.07785 https://arxiv.org/pdf/2602.07785 https://arxiv.org/html/2602.07785

10.02.2026 06:52 β€” πŸ‘ 0    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0

Ruizhe Deng, Bibhas Chakraborty, Ran Chen, Yan Shuo Tan: BFTS: Thompson Sampling with Bayesian Additive Regression Trees https://arxiv.org/abs/2602.07767 https://arxiv.org/pdf/2602.07767 https://arxiv.org/html/2602.07767

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0

Trevor Harris: Flow-Based Conformal Predictive Distributions https://arxiv.org/abs/2602.07633 https://arxiv.org/pdf/2602.07633 https://arxiv.org/html/2602.07633

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0

Wanru Guo, Juan Xie, Binbin Wang, Weicong Chen, Xiaoyi Lu, Vipin Chaudhary, Curtis Tatsuoka: Robust Ultra-High-Dimensional Variable Selection With Correlated Structure Using Group Testing https://arxiv.org/abs/2602.07258 https://arxiv.org/pdf/2602.07258 https://arxiv.org/html/2602.07258

10.02.2026 06:33 β€” πŸ‘ 0    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0

Matthew LeDuc, Tomoko Matsuo: PoissonRatioUQ: An R package for band ratio uncertainty quantification https://arxiv.org/abs/2602.07165 https://arxiv.org/pdf/2602.07165 https://arxiv.org/html/2602.07165

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0

Rishikesh Yadav, Arnab Hazra: Regression modeling of multivariate precipitation extremes under regular variation https://arxiv.org/abs/2602.08865 https://arxiv.org/pdf/2602.08865 https://arxiv.org/html/2602.08865

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Yuta Kawakami, Jin Tian: Measures for Assessing Causal Effect Heterogeneity Unexplained by Covariates https://arxiv.org/abs/2602.08647 https://arxiv.org/pdf/2602.08647 https://arxiv.org/html/2602.08647

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Max Rubinstein, Megan S. Schuler, Elizabeth A. Stuart, Bradley D. Stein, Max Griswold, Elizabeth M. Stone, Beth Ann Griffin: State policy heterogeneity analyses: considerations and proposals https://arxiv.org/abs/2602.08643 https://arxiv.org/pdf/2602.08643 https://arxiv.org/html/2602.08643

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0

Luca Presicce, Sudipto Banerjee: Adaptive Markovian Spatiotemporal Transfer Learning in Multivariate Bayesian Modeling https://arxiv.org/abs/2602.08544 https://arxiv.org/pdf/2602.08544 https://arxiv.org/html/2602.08544

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0

Xiang Ye, Janet Van Niekerk, Haavard Rue: A Bayesian regression framework for circular models with INLA https://arxiv.org/abs/2602.08413 https://arxiv.org/pdf/2602.08413 https://arxiv.org/html/2602.08413

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Takato Hashino, Koji Tsukuda: Estimating the Shannon Entropy Using the Pitman--Yor Process https://arxiv.org/abs/2602.08347 https://arxiv.org/pdf/2602.08347 https://arxiv.org/html/2602.08347

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Jacob Tennenbaum, Adam Kapelner: Improved Conditional Logistic Regression using Information in Concordant Pairs with Software https://arxiv.org/abs/2602.08212 https://arxiv.org/pdf/2602.08212 https://arxiv.org/html/2602.08212

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Juan Carlos Escanciano, Jacobo de U\~na-\'Alvarez: Goodness-of-Fit Tests for Censored and Truncated Data: Maximum Mean Discrepancy Over Regular Functionals https://arxiv.org/abs/2602.08108 https://arxiv.org/pdf/2602.08108 https://arxiv.org/html/2602.08108

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Brian M Cho, Raaz Dwivedi, Nathan Kallus: GAAVI: Global Asymptotic Anytime Valid Inference for the Conditional Mean Function https://arxiv.org/abs/2602.08096 https://arxiv.org/pdf/2602.08096 https://arxiv.org/html/2602.08096

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0

John W. Jackson, Ting-Hsuan Chang, Aster Meche, Trang Q. Nguyen: Estimation Strategies for Causal Decomposition Analysis with Allowability Specifications https://arxiv.org/abs/2602.07825 https://arxiv.org/pdf/2602.07825 https://arxiv.org/html/2602.07825

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Buddhananda Banerjee, Surojit Biswas, Daitari Prusty: Hyperbolic statistical inference for Treatment Effects with Circular biomarker of astigmatism https://arxiv.org/abs/2602.07740 https://arxiv.org/pdf/2602.07740 https://arxiv.org/html/2602.07740

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Chak Kwong (Tommy), Cheng, Hakan Demirtas: Generation of Multivariate Discrete Data with Generalized Poisson, Negative Binomial and Binomial Marginal Distributions https://arxiv.org/abs/2602.07707 https://arxiv.org/pdf/2602.07707 https://arxiv.org/html/2602.07707

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Luk\'a\v{s} Laff\'ers, Jozef Michal Mintal, Ivan Sut\'oris: Correcting for Nonignorable Nonresponse Bias in Ordinal Observational Survey Data https://arxiv.org/abs/2602.07704 https://arxiv.org/pdf/2602.07704 https://arxiv.org/html/2602.07704

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Qishi Zhan, Cheng-Han Yu, Yuchi Chen, Zhikang Dong, Rajarshi Guhaniyogi: Mapping Drivers of Greenness: Spatial Variable Selection for MODIS Vegetation Indices https://arxiv.org/abs/2602.07681 https://arxiv.org/pdf/2602.07681 https://arxiv.org/html/2602.07681

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0

Jiuyao Lu, Tianruo Zhang, Ke Zhu: Fast Rerandomization for Balancing Covariates in Randomized Experiments: A Metropolis-Hastings Framework https://arxiv.org/abs/2602.07613 https://arxiv.org/pdf/2602.07613 https://arxiv.org/html/2602.07613

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0

Jingwen Zhang, Satoshi Hattori: Event-driven type design for clinical trials with recurrent events https://arxiv.org/abs/2602.07482 https://arxiv.org/pdf/2602.07482 https://arxiv.org/html/2602.07482

10.02.2026 06:53 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Lena Schemet, Sarah Friedrich-Welz: Statistical inference after variable selection in Cox models: A simulation study https://arxiv.org/abs/2602.07477 https://arxiv.org/pdf/2602.07477 https://arxiv.org/html/2602.07477

10.02.2026 06:53 β€” πŸ‘ 1    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0

@statme-bot is following 1 prominent accounts