Big Earth Data's Avatar

Big Earth Data

@bigearthdata1.bsky.social

Big Earth Data is the world's first big data journal in the Earth sciences. https://www.tandfonline.com/journals/tbed20

19 Followers  |  5 Following  |  22 Posts  |  Joined: 21.02.2025  |  2.3185

Latest posts by bigearthdata1.bsky.social on Bluesky

Post image

πŸ“’We're delighted to announce a new special issue: lnkd.in/gKesFKT9. If you are engaged in this dynamic field, we warmly invite you to contribute your valuable insights!
#remotesensing #earthobservation #ArtificialIntelligence #ai #MachineLearning #Geospatial #DataScience #SustainableDevelopment

14.10.2025 09:19 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Preview
deeptime: an R package that facilitates highly customizable and reproducible visualizations of data over geological time intervals Data visualization is a key component of any scientific data analysis workflow and is vital for the summarization and dissemination of complex ideas and results. One common hurdle across the Earth ...

πŸ“’deeptime: an #R package that facilitates highly customizable and reproducible visualizations of data over geological time intervals by William Gearty @willgearty.bsky.social
πŸ‘‰https://doi.org/10.1080/20964471.2025.2537516
#Datavisualization #reproducibility #opensource #paleontology #geology

29.09.2025 09:09 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

It's so great to see this package (on CRAN since 2021) finally formally described in a journal! Here's to many more years of standardized, customizable, and reproducible geology data visualization!

And shout out to @richardstockey.bsky.social and @lewisajones.bsky.social for years of encouragement!

06.08.2025 13:15 β€” πŸ‘ 5    πŸ” 3    πŸ’¬ 0    πŸ“Œ 0
Preview
A novel ensemble model for multi-temporal forest vegetation classification: integrating spectral-temporal features and topographic constraints Understanding species distribution in large forest ecosystems is fundamental for biodiversity conservation, biomass estimation, climate regulation, soil and water conservation. While remote sensing...

πŸ“’ [Research Article] A novel ensemble model for multi-temporal forest vegetation classification: integrating spectral-temporal features and topographic constraints
πŸ‘‰Article link: doi.org/10.1080/2096...
πŸ’Œ #Sentinel1 #Sentinel2 #deeplearning #remotesensing #landuse #landcover #forestmapping

19.09.2025 09:02 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Preview
Harnessing generative AI for enhanced disaster management: a systematic review In the consistently evolving artificial intelligence (AI) and large language models (LLMs), many organizations adopt these technologies’ capabilities to solve and assist core operations in many ind...

πŸ“’ [Review Article] Harnessing generative AI for enhanced disaster management: a systematic review
πŸ‘‰Article link: doi.org/10.1080/2096...

#Artificialintelligence #disastermanagement #riskmanagement #largelanguagemodel #bigearthdata #digitalearth #geoscience #remotesensing #GIS #risk

10.09.2025 07:57 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image Post image Post image Post image

πŸ“’Spatial sample weighted machine learning for multitemporal land cover change modeling with imbalanced datasets by Alysha van Duynhoven & Suzana DragiΔ‡eviΔ‡
πŸ‘‰https://doi.org/10.1080/20964471.2025.2518763
#machinelearning #landcover #AI #GeoAI #remotesensing #earthobservation #GIS

02.09.2025 12:24 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Plot of global benthic Ξ΄18O data for 0 – 5.3 Ma (Lisiecki & Raymo, 2005) with geomagnetic polarity subchrons displayed on the top x-axis and planktic foraminiferal primary biozones plotted on the bottom x-axis using the deeptime package.

Plot of global benthic Ξ΄18O data for 0 – 5.3 Ma (Lisiecki & Raymo, 2005) with geomagnetic polarity subchrons displayed on the top x-axis and planktic foraminiferal primary biozones plotted on the bottom x-axis using the deeptime package.

A mammal phylogeny (Garland et al., 1992) plotted in the fan layout using the ggtree and deeptime packages. The greyscale concentric circles in the background indicate geological stages, whereas the linear colored timescale indicates geological epochs.

A mammal phylogeny (Garland et al., 1992) plotted in the fan layout using the ggtree and deeptime packages. The greyscale concentric circles in the background indicate geological stages, whereas the linear colored timescale indicates geological epochs.

Early tetrapod occurrence data (Jones et al., 2023) plotted as a taxonomic/biostratigraphic range plot using the geom_points_range() function from the deeptime package.

Early tetrapod occurrence data (Jones et al., 2023) plotted as a taxonomic/biostratigraphic range plot using the geom_points_range() function from the deeptime package.

A stratigraphic column of Cretaceous lithostratigraphic units from the San Juan Basin, USA. The deeptime package has been used to add pattern fill which indicate the primary lithologies of the units as reported by the Macrostrat API (Peters et al., 2018) via the rmacrostrat R package (Jones et al., 2024).

A stratigraphic column of Cretaceous lithostratigraphic units from the San Juan Basin, USA. The deeptime package has been used to add pattern fill which indicate the primary lithologies of the units as reported by the Macrostrat API (Peters et al., 2018) via the rmacrostrat R package (Jones et al., 2024).

πŸ“’ deeptime: an R package that facilitates highly customizable and reproducible visualizations of data over geological time intervals

πŸ”— doi.org/10.1080/2096...

Fully #openaccess in @bigearthdata1.bsky.social with insight about deeptimeπŸ“¦ development and code examples!

#rstats #geology #paleontology

06.08.2025 13:06 β€” πŸ‘ 116    πŸ” 46    πŸ’¬ 3    πŸ“Œ 3
Post image Post image Post image Post image

πŸ“’Simulation of lake underwater terrain based on the XGBoost model: a case study of typical lakes on the #TibetanPlateau
πŸ‘‰https://doi.org/10.1080/20964471.2025.2515713
#lake #underwater #terrain #XGBoost #topography #DEM #waterstorage #bathymetry #climatechange #hydrology #3D #remotesensing #GIS

20.08.2025 09:37 β€” πŸ‘ 1    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0
Post image Post image Post image Post image

πŸ“’DACIA5: a #Sentinel-1 and #Sentinel-2 #dataset for agricultural #crop identification applications by A. BΔƒicoianu, I. C. Plajer, M. Debu, et al.
πŸ‘‰Article link: doi.org/10.1080/2096...
πŸ’Œ #Artificialintelligence #agriculture #smartagriculture #remotesensing #machinelearning #datasharing #datapaper

04.08.2025 06:17 β€” πŸ‘ 0    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0
Post image Post image Post image Post image

πŸ“’[Research Article] Modeling #deforestation drivers in the Brazilian #Amazon: a comparison of quantitative approaches by Alisson Castro Barreto, Tailon Martins & Adriano MendonΓ§a Souza
πŸ‘‰https://doi.org/10.1080/20964471.2025.2510770
#biome #geoscience #GIS #remotesensing #Brazil #statisticalmethod

25.07.2025 10:06 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image Post image Post image Post image

πŸ“’GeoFactory: an #LLM performance enhancement framework for geoscience factual and inferential tasks
πŸ‘‰https://doi.org/10.1080/20964471.2025.2506291
πŸ’ŒA guidance for adapting LLMs to #geoscience applications and paves the way for future multimodal implementations. Largelanguagemodel

18.07.2025 04:09 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image Post image Post image Post image

πŸ“’ Daily-scale dataset of highly dynamic water of Poyang Lake
πŸ‘‰Article link: doi.org/10.1080/2096...
πŸ’Œ #Remotelysensing #PoyangLake #randomforest #hydrology #landcover #opticalimagery #SAR #WaterIndex

04.07.2025 09:35 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image Post image Post image Post image

πŸ“’ Classification of oil palm tree conditions from #UAV imagery using the #YOLO object detector by Aakash Thapa, Teerayut Horanont et al.
πŸ‘‰Article link: doi.org/10.1080/2096...
πŸ’Œ #Oilpalmtree #deeplearning #YOLOv8 #YOLO #objectdetection #precisionagriculture #remotesensing

24.06.2025 02:41 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Preview
Detection of drainage ditches from LiDAR DTM using U-Net and transfer learning Accurate mapping of ditches is essential for effective hydrological modeling and land management. Traditional methods, such as manual digitization or threshold-based extraction, utilize LiDAR-deriv...

πŸ“’[Research Article] Detection of #drainage ditches from #LiDAR #DTM using U-Net and transfer learning by Holger Virro, Alexander Kmoch, et al.
πŸ‘‰Article link: doi.org/10.1080/2096...
πŸ’Œ #remotesensing #hydrology

18.06.2025 04:07 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image Post image Post image Post image

πŸ“’A deep learning pipeline to #powerinfrastructure detection in #highresolution satellite images by Mengqi Ye et al.
πŸ‘‰https://doi.org/10.1080/20964471.2025.2490408
πŸ’ŒIt highlights the potential of #deeplearning for large-scale #power grid mapping using from #Worldview-3 imagery.
#remotesensing

10.06.2025 03:08 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image Post image Post image Post image

πŸ“’ [New Article] A multi-rule index to extract brine shrimp from satellite imagery: a case study in Ebinur Lake, China
πŸ‘‰Article link: doi.org/10.1080/2096...
Study uses #Landsat data to map #Artemia in China’s #EbinurLake, achieving 94.5% accuracy. #RemoteSensing #BrineShrimp #Conservation

03.06.2025 03:50 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image Post image Post image Post image

πŸ“’ Enhancing geodatabases operability: advanced human-computer interaction through #RAG and Multi-Agent Systems
πŸ‘‰Article link: doi.org/10.1080/2096...
#LargeLanguageModel #LLM #MultiAgentSystem #SQL #geospatialdatabases #GeoAI #GIS #dataquery #datamanagement #geodatabase

27.05.2025 03:31 β€” πŸ‘ 3    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image Post image Post image

πŸ“’ [Review Article] Exploring the concept of digital twins of wetlands for supporting ecosystem monitoring and management by Bing Lu et al.
πŸ‘‰Article link: doi.org/10.1080/2096...
πŸ’Œ #Wetland #remotesensing #GIS #ecosystem #digitaltwins

12.05.2025 02:54 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image Post image Post image Post image

πŸ“’Li-GS: a fast #3D Gaussian reconstruction method assisted by LiDAR point clouds
πŸ‘‰Article link: doi.org/10.1080/2096...
πŸ’ŒLi-GS uses #LiDAR #pointclouds and dynamic voxel filtering to accelerate training while improving #geometric accuracy and reducing hardware demands.
#remotesensing #digitaltwin

27.04.2025 02:30 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image Post image Post image Post image

πŸ“’[Data Note] Restoration of missing #oceancolor data in high-latitude oceans using neural network model
πŸ‘‰https://doi.org/10.1080/20964471.2025.2474655
πŸ’ŒThe NN-LAT50 #dataset for #highlatitude #oceans significantly improves retrieval accuracy and winter coverage. #polar #remotesensing #oceanography

17.04.2025 03:09 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

πŸ”₯ This Wednesday, I reached a major milestone: I successfully completed my #PhD journey by defending my thesis β€˜Advancing #Forest Monitoring using #Sentinel1 C-band #SAR Time Series and #MachineLearning Approaches' at the @sciencecharles.bsky.social @charlesuni.cuni.cz
Details on my thesis πŸ‘‡

14.02.2025 12:12 β€” πŸ‘ 13    πŸ” 3    πŸ’¬ 1    πŸ“Œ 0
Post image Post image Post image

πŸ“’Interactive Earth system data cube visualization in Jupyter notebooks by Maximilian SΓΆchting (@soechting.bsky.social), Miguel D. Mahecha (@miguelmahecha.bsky.social) et al.
πŸ‘‰https://doi.org/10.1080/20964471.2025.2471646
#opensource #3D #datacube #visualization #Jupyter #geoscience #remotesensing

03.04.2025 07:13 β€” πŸ‘ 5    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0

πŸ‘πŸ‘πŸ‘

03.04.2025 06:40 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

Excited to share the latest paper emerging from the fantastic PhD thesis of @soechting.bsky.social! Interactive Earth System Data Cube visualization in Jupyter Notebooks! www.tandfonline.com/doi/full/10....

05.03.2025 21:42 β€” πŸ‘ 11    πŸ” 1    πŸ’¬ 1    πŸ“Œ 0
Post image Post image Post image Post image

πŸ“’Mapping #sugarcane plantations in Northeast #Thailand using multi-temporal data from multi-sensors and #machinelearning algorithms by Savittri Ratanopad Suwanlee, Jaturong Som-Ard et al.
πŸ‘‰https://doi.org/10.1080/20964471.2025.2463730
#remotesensing #earthobservation #agriculture #cropmapping

21.03.2025 02:41 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Preview
STURM-Flood: a curated dataset for deep learning-based flood extent mapping leveraging Sentinel-1 and Sentinel-2 imagery Flooding is a major global natural disaster exacerbated by climate change and urbanization. Timely assessment and mapping of inundations are crucial for preventive and emergency measures, driving t...

πŸ“’ STURM-Flood a curated #dataset for deep learning-based #flood extent #mapping leveraging #Sentinel-1 and #Sentinel-2 imagery by Nicla Notarangelo et al.
πŸ‘‰https://doi.org/10.1080/20964471.2025.2458714
#EarthObservation #ClimateResilience #RemoteSensing #OpenData #AI #disaster #risk

21.02.2025 06:49 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

@bigearthdata1 is following 5 prominent accounts