Big Earth Data's Avatar

Big Earth Data

@bigearthdata1.bsky.social

Big Earth Data is the world's first big data journal in the Earth sciences. https://www.tandfonline.com/journals/tbed20

47 Followers  |  48 Following  |  38 Posts  |  Joined: 21.02.2025  |  2.0589

Latest posts by bigearthdata1.bsky.social on Bluesky

Post image Post image Post image Post image

๐Ÿ“ข An introduction to the OGC/ISO coverage and datacube standard for modeling multi-dimensional, spatio-temporal Big Data by Peter Baumann
๐Ÿ‘‰https://doi.org/10.1080/20964471.2025.2585732
๐Ÿ’Œ #ISO #OGC #standard #datacube #standard #rasdaman #digitalearth #geoscience #remotesensing #BigData #INSPIRE

11.02.2026 03:35 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

๐Ÿ“ข Call for Papers: 10th Anniversary Special Issue of Big Earth Data!
โค๏ธ vvrl.cc/wvly8a
๐ŸคฉSubmit your work to shape the next era of Earth data science!
#BigEarthData #EarthScience #spacescience #sustainability #digitalearth #AIforEarth #SDGs #DataInfrastructure #Earthobservation #AI #digitaltwin

02.02.2026 03:33 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Towards a Global Ground-Based Earth Observatory (GGBEO): Leveraging existing systems and networks To tackle the planetary environmental and climate crisis and meet the United Nationsโ€™ Sustainable Development Goals (SDGs), we must fully leverage the potential of Earth observations (EO). This inv...

Read the article โ€œTowards a Global Ground-Based Earth Observatoryโ€ ๐Ÿ“–
Y.H. de Roeck, Euro-Argo ERIC Office's DG, co-authored it, citing Euro-Argo as key to leveraging Earth observations.
๐Ÿ‘‰ doi.org/10.1080/2096...
#OceanScience #Argofloats @wmo-global.bsky.social @acccflagship.bsky.social @helsinki.fi

08.01.2026 10:32 โ€” ๐Ÿ‘ 2    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image Post image Post image

๐Ÿ“ข [Technical Note] An interactive toolkit based on Google Earth Engine for visual interpretation and analysis of land cover and land cover changes
๐Ÿ‘‰https://doi.org/10.1080/20964471.2025.2608464
#GEE #Toolkit #landcover #remotesensing #earthobservation #GIS #visualization #landuse

30.01.2026 07:28 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Great paper! Many thanks, Greg๐Ÿ‘

23.01.2026 01:29 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
A digital twin approach for the identification and update of ecological infrastructure Addressing the global environmental crisis necessitates coordinated efforts, supported by open and reproducible research practices. Such practices aim to enhance the reliability, efficiency, and cr...

New paper | A digital twin approach for the identification and update of ecological infrastructure
This technical note presents a reproducible and automated approach for supporting land management and planning by identifying and updating ecological infrastructure
doi.org/10.1080/2096...

22.01.2026 09:25 โ€” ๐Ÿ‘ 1    ๐Ÿ” 3    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image Post image Post image Post image

๐Ÿ“ข Deriving peri-urban settlement typologies from Landsat time series analysis: the case study of #Mankweng and environs (South Africa)
๐Ÿ‘‰ doi.org/10.1080/2096...
#satellite #periurban #settlement #SouthAfrica #Landsat #landuse #landcover #SDGs #remotesensing #GIS #cartography #geovisualisation

21.01.2026 09:34 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image Post image Post image

๐Ÿ“ข A transformer-based multi-feature fusion method for detecting traffic events using Twitter data
๐Ÿ‘‰ doi.org/10.1080/2096...
๐Ÿ’Œ #traffic #urban #Twitter #remotesensing #GIS #dataanalysis #BigData #deeplearning #urbanmobility #transportation #humanmobility #smartcity #digitaltwin #GeoAI

12.01.2026 08:36 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image Post image Post image

๐Ÿ“ขArtificial intelligence-driven #precipitation #downscaling and projections over #Thailand using #CMIP6 climate models
๐Ÿ‘‰https://doi.org/10.1080/20964471.2025.2547500
๐Ÿ’Œ #AI #DyNN-Mem #LSTM #CNN #Deeplearning #machinelearning #CMIP6 #hydrology #climatechange #remotesensing #WaterResources

06.01.2026 09:08 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

๐Ÿ’ž ๐ŸŽ„ ๐Ÿ’ž ๐ŸŽ„๐Ÿ’žThis holiday season, we send our heartfelt thanks to our amazing editors, authors, reviewers, and readers. Weโ€™re so excited to keep collaborating with you in 2026! Wishing you a warm, joyful Christmas and a New Year full of peace, happiness, and wonderful new opportunities.๐ŸŒธ ๐Ÿ€ ๐ŸŒธ๐Ÿ€ ๐ŸŒธ

23.12.2025 02:15 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image Post image Post image

๐Ÿ“ขHarnessing generative AI for enhanced disaster management: a systematic review
๐Ÿ‘‰https://doi.org/10.1080/20964471.2025.2521157
๐Ÿ’Œ#AI #LLMs #disaster #PRISMA #review #SWOT#disastermanagement #risk #remotesensing #GIS

22.12.2025 09:50 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
The front page of our article in Big Earth Data journal titled "Evaluation of ten satellite-based and reanalysis precipitationdatasets on a daily basis for Czechia (2001โ€“2021)" by Daniel Paluba, Vojtฤ›ch Bliลพลˆรกk, Miloslav Mรผller and Pล™emysl ล tych. Access the study using the DOI link: https://doi.org/10.1080/20964471.2025.2592444

The front page of our article in Big Earth Data journal titled "Evaluation of ten satellite-based and reanalysis precipitationdatasets on a daily basis for Czechia (2001โ€“2021)" by Daniel Paluba, Vojtฤ›ch Bliลพลˆรกk, Miloslav Mรผller and Pล™emysl ล tych. Access the study using the DOI link: https://doi.org/10.1080/20964471.2025.2592444

Our new #OpenAccess paper in @bigearthdata1.bsky.social @tandfresearch.bsky.social on evaluation of 10 satellite-based and reanalysis #precipitation datasets on a daily basis for #Czechia

doi.org/10.1080/20964471.2025.2592444

Most accurate: GSMaP & ERA5-Land
Worst results: CHIRPS, GLDAS & PERSIANN

06.12.2025 19:28 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 1
Post image Post image Post image Post image

Towards a Global Ground-Based Earth Observatory (GGBEO): Leveraging existing systems and networks by Hanna K. Lappalainen, Markku Kulmala and et al.
๐Ÿ‘‰ doi.org/10.1080/2096...
๐Ÿ’Œ #SDGs #PEEX #climate #FAIR #TRUST #geoscience #remotesensing #earthobervation #environment #atmosphere

11.12.2025 05:46 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image Post image Post image

๐Ÿ“ข [Review Article] Exploring the concept of digital twins of #wetlands for supporting #ecosystem monitoring and management by Bing Lu, Lucie Francescutto et al.
๐Ÿ‘‰ doi.org/10.1080/2096...
๐Ÿ’Œ #climatechange #visualization #digitaltwin #remotesensing #GIS

05.12.2025 07:53 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image Post image Post image

๐Ÿ“ข Enhanced oceanic fog nowcasting through satellite-based recurrent neural networks by Sahel Mahdavi, Meisam Amani, Terry Bullock & Steven Beale
๐Ÿ‘‰https://doi.org/10.1080/20964471.2024.2412379
๐Ÿ’Œ #Fog #deeplearning #GOES-16 #forecast #offshore
#remotesensing #GIS #Earthobservation #bigdata

28.11.2025 09:36 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
A hybrid approach for enhanced flood prediction and assessment: Leveraging physical models, deep learning and satellite remote sensing Accurate real-time information is crucial for effective flood risk management, especially in regions with complex terrain and irregular rainfall patterns. This study developed a hybrid model integr...

๐Ÿ“ขA hybrid approach for enhanced flood prediction and assessment: Leveraging physical models, deep learning and satellite remote sensing
๐Ÿ‘‰https://doi.org/10.1080/20964471.2025.2530850
#flood #risk #disaster #waterresource #hydrology #climateresilience #remotesensing #earthobservation #GIS #AI #GeoAI

21.11.2025 03:49 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image Post image Post image

๐Ÿ“ข Driver analysis of subarctic wildfire severity over a 35-year period by Daniel Martin Nelson, Yuhong He & G. W. K. Moore
๐Ÿ‘‰ doi.org/10.1080/2096...
๐Ÿ’Œ #Wildfire #GoogleEarthEngine #LandTrendR #SHAP #machinelearning #forest #remotesensing #earthobservation #GIS #BigData

14.11.2025 09:39 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

๐Ÿ“ข Good news! The special issue on โ€œBig data and artificial intelligence for natural hazardsโ€ has been published online.
๐Ÿ‘‰https://tandfonline.com/toc/tbed20/9/3?nav=tocList
#flood #drought #wildfire #bigdata #AI #remotesensing #disaster #hazard #earthobservation #GIS #GeoAI #SDGs

05.11.2025 08:05 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image Post image Post image

๐Ÿ“ขAssessing future risk of humanitarian crises using projections of climate-related hazards, population, conflict and other socioeconomic variables within the INFORM framework
๐Ÿ‘‰https://doi.org/10.1080/20964471.2025.2535852
๐Ÿ’Œ #INFORM #climatechange #hazard #SSPs #risk #remotesensing #GIS #BigData

27.10.2025 14:07 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

๐Ÿ“ขWe're delighted to announce a new special issue: lnkd.in/gKesFKT9. If you are engaged in this dynamic field, we warmly invite you to contribute your valuable insights!
#remotesensing #earthobservation #ArtificialIntelligence #ai #MachineLearning #Geospatial #DataScience #SustainableDevelopment

14.10.2025 09:19 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
deeptime: an R package that facilitates highly customizable and reproducible visualizations of data over geological time intervals Data visualization is a key component of any scientific data analysis workflow and is vital for the summarization and dissemination of complex ideas and results. One common hurdle across the Earth ...

๐Ÿ“ขdeeptime: an #R package that facilitates highly customizable and reproducible visualizations of data over geological time intervals by William Gearty @willgearty.bsky.social
๐Ÿ‘‰https://doi.org/10.1080/20964471.2025.2537516
#Datavisualization #reproducibility #opensource #paleontology #geology

29.09.2025 09:09 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

It's so great to see this package (on CRAN since 2021) finally formally described in a journal! Here's to many more years of standardized, customizable, and reproducible geology data visualization!

And shout out to @richardstockey.bsky.social and @lewisajones.bsky.social for years of encouragement!

06.08.2025 13:15 โ€” ๐Ÿ‘ 5    ๐Ÿ” 3    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
A novel ensemble model for multi-temporal forest vegetation classification: integrating spectral-temporal features and topographic constraints Understanding species distribution in large forest ecosystems is fundamental for biodiversity conservation, biomass estimation, climate regulation, soil and water conservation. While remote sensing...

๐Ÿ“ข [Research Article] A novel ensemble model for multi-temporal forest vegetation classification: integrating spectral-temporal features and topographic constraints
๐Ÿ‘‰Article link: doi.org/10.1080/2096...
๐Ÿ’Œ #Sentinel1 #Sentinel2 #deeplearning #remotesensing #landuse #landcover #forestmapping

19.09.2025 09:02 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Harnessing generative AI for enhanced disaster management: a systematic review In the consistently evolving artificial intelligence (AI) and large language models (LLMs), many organizations adopt these technologiesโ€™ capabilities to solve and assist core operations in many ind...

๐Ÿ“ข [Review Article] Harnessing generative AI for enhanced disaster management: a systematic review
๐Ÿ‘‰Article link: doi.org/10.1080/2096...

#Artificialintelligence #disastermanagement #riskmanagement #largelanguagemodel #bigearthdata #digitalearth #geoscience #remotesensing #GIS #risk

10.09.2025 07:57 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image Post image Post image

๐Ÿ“ขSpatial sample weighted machine learning for multitemporal land cover change modeling with imbalanced datasets by Alysha van Duynhoven & Suzana Dragiฤ‡eviฤ‡
๐Ÿ‘‰https://doi.org/10.1080/20964471.2025.2518763
#machinelearning #landcover #AI #GeoAI #remotesensing #earthobservation #GIS

02.09.2025 12:24 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Plot of global benthic ฮด18O data for 0 โ€“ 5.3 Ma (Lisiecki & Raymo, 2005) with geomagnetic polarity subchrons displayed on the top x-axis and planktic foraminiferal primary biozones plotted on the bottom x-axis using the deeptime package.

Plot of global benthic ฮด18O data for 0 โ€“ 5.3 Ma (Lisiecki & Raymo, 2005) with geomagnetic polarity subchrons displayed on the top x-axis and planktic foraminiferal primary biozones plotted on the bottom x-axis using the deeptime package.

A mammal phylogeny (Garland et al., 1992) plotted in the fan layout using the ggtree and deeptime packages. The greyscale concentric circles in the background indicate geological stages, whereas the linear colored timescale indicates geological epochs.

A mammal phylogeny (Garland et al., 1992) plotted in the fan layout using the ggtree and deeptime packages. The greyscale concentric circles in the background indicate geological stages, whereas the linear colored timescale indicates geological epochs.

Early tetrapod occurrence data (Jones et al., 2023) plotted as a taxonomic/biostratigraphic range plot using the geom_points_range() function from the deeptime package.

Early tetrapod occurrence data (Jones et al., 2023) plotted as a taxonomic/biostratigraphic range plot using the geom_points_range() function from the deeptime package.

A stratigraphic column of Cretaceous lithostratigraphic units from the San Juan Basin, USA. The deeptime package has been used to add pattern fill which indicate the primary lithologies of the units as reported by the Macrostrat API (Peters et al., 2018) via the rmacrostrat R package (Jones et al., 2024).

A stratigraphic column of Cretaceous lithostratigraphic units from the San Juan Basin, USA. The deeptime package has been used to add pattern fill which indicate the primary lithologies of the units as reported by the Macrostrat API (Peters et al., 2018) via the rmacrostrat R package (Jones et al., 2024).

๐Ÿ“ข deeptime: an R package that facilitates highly customizable and reproducible visualizations of data over geological time intervals

๐Ÿ”— doi.org/10.1080/2096...

Fully #openaccess in @bigearthdata1.bsky.social with insight about deeptime๐Ÿ“ฆ development and code examples!

#rstats #geology #paleontology

06.08.2025 13:06 โ€” ๐Ÿ‘ 116    ๐Ÿ” 45    ๐Ÿ’ฌ 3    ๐Ÿ“Œ 3
Post image Post image Post image Post image

๐Ÿ“ขSimulation of lake underwater terrain based on the XGBoost model: a case study of typical lakes on the #TibetanPlateau
๐Ÿ‘‰https://doi.org/10.1080/20964471.2025.2515713
#lake #underwater #terrain #XGBoost #topography #DEM #waterstorage #bathymetry #climatechange #hydrology #3D #remotesensing #GIS

20.08.2025 09:37 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image Post image Post image

๐Ÿ“ขDACIA5: a #Sentinel-1 and #Sentinel-2 #dataset for agricultural #crop identification applications by A. Bฤƒicoianu, I. C. Plajer, M. Debu, et al.
๐Ÿ‘‰Article link: doi.org/10.1080/2096...
๐Ÿ’Œ #Artificialintelligence #agriculture #smartagriculture #remotesensing #machinelearning #datasharing #datapaper

04.08.2025 06:17 โ€” ๐Ÿ‘ 0    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image Post image Post image

๐Ÿ“ข[Research Article] Modeling #deforestation drivers in the Brazilian #Amazon: a comparison of quantitative approaches by Alisson Castro Barreto, Tailon Martins & Adriano Mendonรงa Souza
๐Ÿ‘‰https://doi.org/10.1080/20964471.2025.2510770
#biome #geoscience #GIS #remotesensing #Brazil #statisticalmethod

25.07.2025 10:06 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image Post image Post image

๐Ÿ“ขGeoFactory: an #LLM performance enhancement framework for geoscience factual and inferential tasks
๐Ÿ‘‰https://doi.org/10.1080/20964471.2025.2506291
๐Ÿ’ŒA guidance for adapting LLMs to #geoscience applications and paves the way for future multimodal implementations. Largelanguagemodel

18.07.2025 04:09 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

@bigearthdata1 is following 19 prominent accounts