FalkorDB's Avatar

FalkorDB

@falkordb.bsky.social

FalkorDB is a high-performance, multi-tenant graph database designed to address the limitations of traditional vector/search databases in Large Language Model (LLM) applications.

18 Followers  |  1 Following  |  36 Posts  |  Joined: 21.10.2024  |  1.5409

Latest posts by falkordb.bsky.social on Bluesky

Preview
G.V() is now compatible with FalkorDB Descended from RedisGraph technology, FalkorDB is a versatile graph database that excels in multiple use cases. Its powerful GenAI-focused approach is ideal for applications such as GraphRAG, agentic ...

New integration alert πŸ“’ πŸ“’: G.V() is now officially compatible with @falkordb.bsky.social !
We're bringing in first-class Cypher querying support along with high performance, and fully interactive graph visualization. But that's not everything!

Find out more at gdotv.com/blog/gdotv-s...

04.09.2025 15:07 β€” πŸ‘ 1    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0

Thnx for the shoutout! How did you find it? :)

28.09.2025 12:25 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

FalkorDB v4.10.0 boosts graph performance with string interning, array indexing, & memory introspection for low-latency, predictable memory use in multi-tenant/real-time systems. Ideal for teams needing efficient memory & performance. Check it: github.com/FalkorDB/fal...

12.06.2025 14:15 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

WOW, pitching at #SouthSummit was incredible.

We focused on a growing pain point: LLM hallucinations.

Specifically, why GraphRAG architecture delivers what VectorRAG can’t β€” trust, context, and accuracy at enterprise scale.

#GraphRAG #GenAI #FalkorDB #LLM #SouthSummit2025

05.06.2025 08:42 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

3- @falkordb.bsky.social for AI-centric, Redis-backed graphs

15.05.2025 13:54 β€” πŸ‘ 2    πŸ” 1    πŸ’¬ 1    πŸ“Œ 0
Post image

Presenting at Amazon Web Services (AWS) #AWSSummitTLV next week!
Come say hey & learn why what you can do to mitigate LLM #hallucinations with GraphRAG.

21.05.2025 13:37 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

In 2023, Klarna's AI chatbot aimed to replace customer service reps. FalkorDB tracked this, noting its evolution. Klarna's shift urges devs to audit AI, test graph retrieval for accuracy & scale, and prioritize structured retrieval for reliable generative AI.

15.05.2025 13:30 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

United Airlines used AI to streamline decisions with a secure data platform and flight ops pipelines. 90% adoption by managers shows disciplined AI boosts productivity. A knowledge graph could further cut costs, scale ops, and tighten loops for fewer delays. KG build guide below

13.05.2025 15:58 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

Speaking at #ODSCEast 2025, May 13-15 in Boston & virtual! Topics: Graph DB for #machinelearning & why GraphRAG beats vectorRAG in GenAI. Slides & takeaways shared post-event. Join us! Free passes: odsc.com/boston/virtu... #ODSC2025

12.05.2025 14:39 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

Graph-backed text-to-SQL demo at #KGC2025 today! Text-to-SQL boosts productivity: business users query in natural language, engineers cut reporting backlog. Semantic traversal, not matching, for production-grade results. Catch it later!

09.05.2025 14:45 β€” πŸ‘ 1    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0
Post image

Building a knowledge graph? At AWS DevOps day, we discussed #normalization: removing redundancies. E.g., "works_in" & "employed_by" are the same. Eliminate one to streamline your graph. #graphrag

07.05.2025 11:04 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Video thumbnail

Building a knowledge graph? Ask:
Need LLMs with more context, less hallucination?
Want to visualize risk or track assets in real-time?
Bridging structured + unstructured data?
GraphRAG solves this. Start here: github.com/FalkorDB/Gra...
#GraphRAG #KnowledgeGraph

06.05.2025 10:06 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

Bank of America hit 2B+ AI interactions with >90% accuracy using small models, not massive LLMs. Their approach: robust retrieval architecture. Vector search is easy to prototype but fails in production with latency and opaque reasoning. Is your retrieval built for just a demo?

30.04.2025 09:30 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

Can your GenAI retrieval handle multi-hop logic? Most can't, relying on naive nearest-neighbor search. At AWS DevOps Day, we discussed scaling #GraphRAG: unlike VectorRAG, it builds a knowledge graph for deeper data understanding + higher accuracy. #AI #RAG

29.04.2025 12:16 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

πŸŽ‰HackerNoon readers have voted FalkorDB the Startup of the Year 2024 for Tel Aviv. Our open-source property-graph database outscored more than 14k ventures on community impact, technical progress, and real-world traction. Thanks for your vote of confidence & happy graphing πŸ‘©β€πŸ’»

28.04.2025 09:37 β€” πŸ‘ 0    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0
Video thumbnail

Yesterday's 'Easily Achieve X0,000s Ops/sec with Multigraph Topology' workshop was awesome.

We started with a standalone machine with 16 cores = 26k queries per second. We tripled and then doubled the number of cores, and achieved linear scalability.
www.youtube.com/watch?v=LbeA...

23.04.2025 13:52 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Video thumbnail

Here are 4 #RAG interview questions that separate surface-level prompt hackers from true retrieval engineers. These are the questions that will become standard in hiring panels for GenAI infrastructure roles. Getting these right is what separates operators from architects.

www.falkordb.com/try-free

22.04.2025 11:48 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

GenAI's only as good as its retrieval layer. Survey shows: 85% deploy LLMs, 71% see output risks, 99% say human oversight’s key. Retrieval fails without structured data. Use graph databases to model relationships, route clean results to LLMs for fast, explainable answers. github.com/FalkorDB/Gra...

16.04.2025 11:19 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Video thumbnail

Large context windows (up to 1M tokens) won’t eliminate RAG:
- High latency, costs, and memory constraints.
- Performance degrades with longer texts.
- Privacy risks with unrestricted data access.

GraphRAG offers accurate, efficient retrieval. How are you managing these trade-offs?

#rag #llm

17.03.2025 12:59 β€” πŸ‘ 1    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0
Video thumbnail

Pure semantic search struggles with relational queries. Hybrid retrievalβ€”vector embeddings plus graph queriesβ€”is the fix. FalkorDB + LangChain + LangGraph handles this efficiently. How's your RAG stack handling this?

12.03.2025 12:01 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Video thumbnail

Generative AI demands real-time reasoning, but traditional databases struggle with dynamic data. At NVIDIA's AI conference, FalkorDB will show how knowledge graphs power LLM workflows (e.g., GraphRAG) & fraud detection.
Think graph-native storage is the future?

06.03.2025 09:51 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Video thumbnail

LLMs + memory = game-changer. FalkorDB's graph DB now integrates with LangChain, enabling AI agents to retain context across interactions. Dive into the tech: optimized queries, scalable architecture, and simplified dev workflow. Curious?

Check out the guide: www.falkordb.com/blog/buildin...

03.03.2025 16:22 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Video thumbnail

NoLiMA: GPT-4o's accuracy drops from 99.3% to 69.7% when context expands from <1K to 32K tokens. Scaling context windows alone can't overcome the inability to model latent relationships. Property graphs = missing layer (explicit relationship encoding, metadata-aware retrieval).

19.02.2025 14:45 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Video thumbnail

New website, new look, still the fastest.
www.falkordb.com

#GenAI #LLM #GraphRAG #RAG

17.02.2025 14:13 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

Reminder: Need help writing effective cypher queries? We're hosting a webinar designed for developers, data scientists, and software architects who are either working with graph databases or exploring their potential.

Tuesday Feb 18 9:30AM - 10:15AM PST ↗️ Sign up: lu.ma/b2npiu4r

06.02.2025 11:53 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Video thumbnail

How much of your enterprise data do you send to an LLM?

#RAG #LLM #EnterpriseData #KnowledgeGraph #GraphRAG

05.02.2025 15:37 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Video thumbnail

Apple’s AI errors highlight why grounding outputs in verifiable data is critical. Sensitive domains like news or healthcare can’t afford misinformation. Graph-based RAG systems offer a way forward. Is your AI ready for this challenge?
#rag #graph #genai

04.02.2025 17:43 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Video thumbnail

Join FalkorDB's CTO for a deep dive into writing efficient Cypher queries. Learn how to optimize query paths, handle complex traversals, and avoid bottlenecks when scaling graph workloads.

πŸ—“οΈ 18 Feb 2025 | ⏰ 9:30 AM PST / 19:30 PM IST
πŸ”— Sign up: lu.ma/b2npiu4r

28.01.2025 12:53 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Video thumbnail

Manually connecting ontologies to KGs? Painful. GraphRAG-SDK 0.5 automates itβ€”just load your KG, and the SDK handles the ontology. Query with LLMs instantly. No manual setup, no hassle. Perfect for structured data pipelines or pre-existing KGs.
Check it out: github.com/FalkorDB/Gra...

#graphrag

27.01.2025 13:41 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

Scaling GraphRAG? Composite indexes, cardinality reduction & caching embeddings are essential in controlling indexing costs. We wrote more about this here: www.falkordb.com/blog/reduce-...

How do you optimize graph workloads?

20.01.2025 16:13 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

@falkordb is following 1 prominent accounts