Eva Yi Xie's Avatar

Eva Yi Xie

@evayixie.bsky.social

Comp Neuro PhD student @ Princeton. Visiting Scientist @ Allen Institute. MIT’24 https://minzsiure.github.io

27 Followers  |  23 Following  |  12 Posts  |  Joined: 21.11.2024  |  1.666

Latest posts by evayixie.bsky.social on Bluesky

Thank you 😊 That means a lot to hear!

30.10.2025 20:24 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

#neuroscience

30.10.2025 15:08 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

9/9 Lastly, we thank the colleagues @alleninstitute.org and @cosynemeeting.bsky.social for their insightful feedback on an early version of this work! Happy to chat: evayixie@princeton.edu; lukasz.kusmierz@alleninstitute.org.

30.10.2025 15:01 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

8/ @tyrellturing.bsky.social β€˜s group recently shows brain-like learning with exponentiated gradients naturally gives rise to log-normal connectivity distributionsβ€”our results offer a theoretical perspective that elucidates the dynamical consequences of these heavy-tailed structures.

30.10.2025 14:59 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Slow Transition to Low-Dimensional Chaos in Heavy-Tailed Recurrent... Growing evidence suggests that synaptic weights in the brain follow heavy-tailed distributions, yet most theoretical analyses of recurrent neural networks (RNNs) assume Gaussian connectivity. We...

7/ For more details, implications of our results to neuroscience 🧠 and machine learning πŸ€–, + exciting future directions, please check out our full paper or visit our poster at #NeurIPS2025:

πŸ”—OpenReview: openreview.net/forum?id=J0S...
πŸ“Code: github.com/AllenInstitu...

30.10.2025 14:57 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

6/ Conclusion: Our results reveal a biologically aligned tradeoff between the robustness of dynamics and the richness of neural activity. Our results provide a tractable framework for understanding dynamics in realistically sized, heavy-tailed neural circuits.

30.10.2025 14:57 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

5/ ‼️Result 3: However, this robustness of slow transition comes with a tradeoff ↔️: heavier tails reduce the Lyapunov dimension of the network attractor, indicating lower effective dimensionality.

30.10.2025 14:57 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

4/ (Side note: The computational benefit of being near the edge of chaos is well established for both feedforward and recurrent neural networks. We validate in Appendix L this indeed translates to improved info processing in simple reservoir-computing tasks. πŸ€–πŸ§ )

30.10.2025 14:56 β€” πŸ‘ 3    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

3/ πŸ”ŽResult 2: Compared to Gaussian networks, we found finite heavy-tailed RNNs exhibit a broader gain regime near the edge of chaos: a *slow* transition to chaos. 🐒

30.10.2025 14:56 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

2/ πŸ”ŽResult 1: While mean-field theory for the infinite system predicts ubiquitous chaos, our analysis reveals *finite-size* RNNs have a sharp transition between quiescent & chaotic dynamics.Β 

We theoretically predict the gain of transition and validated it through simulations.

30.10.2025 14:56 β€” πŸ‘ 3    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

1/ Setup: With @mihalas.bsky.social and Lukasz Kusmierz, We study RNNs with weights drawn from biologically plausible LΓ©vy alpha-stable distributions, generalizing the Gaussian distribution to heavy tails.

30.10.2025 14:55 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
https://tinyurl.com/heavyrnn

https://tinyurl.com/heavyrnn

Connectome suggests brain’s synaptic weights follow heavy-tailed distributions, yet most analyses of RNNs assume Gaussian connectivity.Β 

πŸ§΅β¬‡οΈ Our @alleninstitute.org #NeurIPS2025 paper shows heavy-tailed weights can strongly affect dynamics, trade off robustness + attractor dimension.

30.10.2025 14:54 β€” πŸ‘ 29    πŸ” 7    πŸ’¬ 4    πŸ“Œ 0

Slow Transition to Low-Dimensional Chaos in Heavy-Tailed Recurrent Neural Networks https://www.biorxiv.org/content/10.1101/2025.10.24.684386v1

25.10.2025 06:15 β€” πŸ‘ 2    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0
Post image

🚨 Only 4 days left to submit to Data on the Brain and Mind! 🚨

Don’t miss your chance to contribute to our Findings or Tutorial tracks.
We’re excited to feature oral presentations in both tracks!

05.09.2025 00:43 β€” πŸ‘ 2    πŸ” 2    πŸ’¬ 0    πŸ“Œ 1
NeurIPS 2025 Workshop DBM Welcome to the OpenReview homepage for NeurIPS 2025 Workshop DBM

🚨 Deadline Extended 🚨
The submission deadline for the Data on the Brain & Mind Workshop (NeurIPS 2025) has been extended to Sep 8 (AoE)! 🧠✨
We invite you to submit your findings or tutorials via the OpenReview portal:
openreview.net/group?id=Neu...

27.08.2025 19:45 β€” πŸ‘ 4    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0
Data on the Brain & Mind

πŸ“’ 10 days left to submit to the Data on the Brain & Mind Workshop at #NeurIPS2025!

πŸ“ Call for:
β€’ Findings (4 or 8 pages)
β€’ Tutorials

If you’re submitting to ICLR or NeurIPS, consider submitting here tooβ€”and highlight how to use a cog neuro dataset in our tutorial track!
πŸ”— data-brain-mind.github.io

25.08.2025 15:43 β€” πŸ‘ 8    πŸ” 5    πŸ’¬ 0    πŸ“Œ 0
Post image

🚨 Excited to announce our #NeurIPS2025 Workshop: Data on the Brain & Mind

πŸ“£ Call for: Findings (4- or 8-page) + Tutorials tracks

πŸŽ™οΈ Speakers include @dyamins.bsky.social @lauragwilliams.bsky.social @cpehlevan.bsky.social

🌐 Learn more: data-brain-mind.github.io

04.08.2025 15:28 β€” πŸ‘ 31    πŸ” 10    πŸ’¬ 0    πŸ“Œ 3

@evayixie is following 20 prominent accounts