's Avatar

@itsalexzajac.bsky.social

33 Followers  |  4 Following  |  1,602 Posts  |  Joined: 27.04.2025  |  2.3657

Latest posts by itsalexzajac.bsky.social on Bluesky

Preview
Subscribe to Hungry Minds Get smarter about Software and AI in 5 minutes. Save 50+ hours/week with deep dives, trends, and tools hand-picked from 100+ sources. Join 50,000+ engineers from big tech to startups for 1 free email every Monday. Click to read Hungry Minds, by Alexandre Zajac, a Substack publication.

If you enjoyed this thread:

1. Follow me @itsalexzajac for more content on Software and AI
2. Check out Hungry Minds: newsletter.hungryminds.dev
3. RT the tweet below to share this thread with your audience

08.10.2025 15:31 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

What did I miss?

08.10.2025 15:31 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Pick the one that matches your constraints, and go build things!

08.10.2025 15:31 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Neither is "better."

Both are tools.

08.10.2025 15:31 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

GraphQL works when clients need flexibility and you can handle the backend complexity.

08.10.2025 15:31 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

REST works when your API serves many clients with similar needs.

08.10.2025 15:31 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Query depth can spiral.
Rate limiting gets messy.
Complexity moves to the client.
Caching becomes your problem.

08.10.2025 15:31 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

The cost of this:

08.10.2025 15:31 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

You grab exactly what you need.
One plate. One trip. One endpoint.

No overfetching. No wasted bandwidth.

08.10.2025 15:31 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

GraphQL is a buffet.

08.10.2025 15:31 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Multiple endpoints. Standard HTTP methods. Predictable, simple, cacheable.

But you're stuck with what the kitchen sends.

08.10.2025 15:31 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

You order the salmon, you get the salmon.
Plus rice. Plus vegetables. Plus garnish.

Even if you only wanted the fish.

That's overfetching.

08.10.2025 15:31 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

REST is a menu.

08.10.2025 15:31 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

They're solving the wrong problem.

The real question isn't which is better.

It's which solves YOUR problem.

08.10.2025 15:31 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Video thumbnail

Most developers waste hours debating REST vs GraphQL...

08.10.2025 15:31 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Preview
Hungry Minds Get smarter about Software and AI in 5 minutes. Save 50+ hours/week with deep dives, trends and tools hand-picked from 100+ sources. Join 50K+ engineers from big tech to startups for 1 free email every Monday.

If you enjoyed this thread:

1. Follow me @itsalexzajac for more content on Software and AI
2. Check out Hungry Minds: newsletter.hungryminds.dev
3. RT the tweet below to share this thread with your audience

07.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

What do you think?

07.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Don't choose between traditional ML and LLMs.

Combine them strategically.

Use classical methods for filtering.
Use LLMs for nuanced ranking.

07.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

This is 10,000x cheaper than the naive LLM approach.

What can we learn from this?

07.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Results:

β†’ LLM-as-judge validated offline quality
β†’ Order penetration improved in production
β†’ Hybrid approach unlocked LLM benefits without scale traps

07.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

4. Personalized scoring and online integration

Combine LLM rankings with real-time signals (location, time, preferences). Deploy with standard production infrastructure.

07.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

3. Targeted LLM mapping

Now the LLM only ranks 200 items, not millions. It maps filtered candidates to user preferences with full context and nuance.

07.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

2. RAG retrieval

Use vector similarity to pull ~200 relevant candidates from millions of items. Fast, cheap, and surprisingly effective at filtering.

07.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

1. Tagset grouping

Cluster similar tagsets together offline. This creates semantic neighborhoods that reduce the search space dramatically.

07.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

0. Data cleaning and tagging

Turn messy merchant data into clean, structured tags. Think "vegan options" or "quick delivery" instead of raw descriptions.

07.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Most teams would either abandon LLMs or burn cash.

DoorDash found a third path.

They built a hybrid system:

07.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

β†’ Context bloat with millions of items
β†’ 200M+ users = seven-figure monthly costs
β†’ Raw text embeddings miss critical structure

07.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Cold start recommendations seem perfect for LLMs.

But naive approaches fail at scale:

07.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

Recommendation systems with LLMs?

DoorDash's architecture:

07.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

What are you reading this week?

06.10.2025 15:32 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

@itsalexzajac is following 4 prominent accounts