Symmetric and positive (invertible) matrices.
10.08.2025 12:47 — 👍 2 🔁 0 💬 0 📌 0@gabrielpeyre.bsky.social
Symmetric and positive (invertible) matrices.
10.08.2025 12:47 — 👍 2 🔁 0 💬 0 📌 0To meditate while resting on the beach...
09.08.2025 11:15 — 👍 11 🔁 0 💬 1 📌 0Fun (...) fact: the only linear operators on matrices that preserves the rank are X->AXB, where A and B are invertible (with X->X^T in the square case). This was apparently first proved (?) in 1959 by Marcus and Moyls.
02.07.2025 11:04 — 👍 24 🔁 2 💬 1 📌 0scPRINT is now finally on the Chan Zuckerberg Institute's Model Hub! 🎉 🧬 🌈 It is one more way you can use this cell foundation model to embed, denoise, predict cell type, get gene networks from your data from scratch, or fine-tune it on your own application / usecase: virtualcellmodels.cz...
17.06.2025 21:06 — 👍 4 🔁 1 💬 2 📌 0Oui je pense
04.06.2025 13:16 — 👍 2 🔁 0 💬 0 📌 0Le prochain Data Science Colloquium à l'ENS, jeudi 12 juin, sera donné par David Louapre d'Ubisoft, "What modern AI and neuroscience can bring to non-playing characters in video games". David c'est bien sûr également le vulgarisateur scientifique de www.youtube.com/scienceetonn...
04.06.2025 07:00 — 👍 19 🔁 4 💬 2 📌 0If one of the two distributions is an isotropic Gaussian, then flow matching is equivalent to a diffusion model. This is known as Tweedie's formula. In particular, the vector field is a gradient vector, as in optimal transport. speakerdeck.com/gpeyre/compu...
31.05.2025 10:16 — 👍 45 🔁 4 💬 1 📌 0The course is currently running on Wednesdays, you should go if you are in Paris and interested in OT! www.college-de-france.fr/fr/personne/...
25.05.2025 09:17 — 👍 7 🔁 0 💬 0 📌 1Lectures note for the course of Cyril Letrouit at Collège de France on the quantitative stability of optimal transport.
www.imo.universite-paris-saclay.fr/~cyril.letro...
I have cleaned up the notebooks for my course on Optimal Transport for Machine Learners and added links to the slides and lecture notes. github.com/gpeyre/ot4ml
25.05.2025 09:12 — 👍 58 🔁 9 💬 1 📌 0I have updated my slides on the maths of AI by an optimal pairing between AI and maths researchers ... speakerdeck.com/gpeyre/the-m...
20.05.2025 11:21 — 👍 26 🔁 3 💬 3 📌 0Mon article sur les maths de l’IA est paru dans la gazette de la smf smf.emath.fr/publications...
La version en anglais est sur arxiv
arxiv.org/abs/2501.10465
I have cleaned a bit my lecture notes on Optimal Transport for Machine Learners arxiv.org/abs/2505.06589
13.05.2025 05:18 — 👍 120 🔁 29 💬 0 📌 0Announcing : The 2nd International Summer School on Mathematical Aspects of Data Science
mathsdata2025.github.io
EPFL, Sept 1–5, 2025
Speakers:
Bach @bachfrancis.bsky.social
Bandeira
Mallat
Montanari
Peyré @gabrielpeyre.bsky.social
For PhD students & early-career researchers
Apply before May 15!
Applications are 📣OPEN📣 for #PAISS2025 THE AI summer school in #Grenoble 1-5 Sept! Speakers so far @yann-lecun.bsky.social @dimadamen.bsky.social @arthurgretton.bsky.social @gabrielpeyre.bsky.social @science4all.org A. Cristia J. Revaud M. Caron J. Carpentier M. Vladimirova ➡️ paiss.inria.fr
11.04.2025 13:44 — 👍 30 🔁 9 💬 0 📌 4The AI for Science summer school, coorganized by CNRS and U of Chicago will be in Paris, June 30th to july 4th, register asap if you want attend!
datascience.uchicago.edu/events/ai-sc...
Futur best seller!
28.03.2025 08:08 — 👍 37 🔁 6 💬 2 📌 0Characterizing finely the decay of eigenvalues of kernel matrices: many people need it, but explicit references are hard to find. This blog post reviews amazing asymptotic results from Harold Widom (1963!) and proposes new non-asymptotic bounds.
francisbach.com/spectrum-ker...
I am biased toward the SURE, I won’t take the risk to estimate without Stein.
20.03.2025 14:03 — 👍 1 🔁 0 💬 0 📌 0⚡️Check out our workshop tomorrow at @lpiparis.bsky.social, great speakers (@gabrielpeyre.bsky.social, @sdascoli.bsky.social, @samillingworth.com & many more) will cover Theory and Applications of Generative AI + Connexions with neuroscience 🧠
And there's food 🍰
➡️ genai-conference-website.vercel.app
Video de l’exposé niveau collège (en français...) youtu.be/F-MRgm6OE54
10.02.2025 21:12 — 👍 25 🔁 2 💬 2 📌 0@vickykalogeiton.bsky.social and @davidpicard.bsky.social updating live there slides to quote my talk just before ... next level presentation!
07.02.2025 11:57 — 👍 36 🔁 2 💬 0 📌 1The distinction between decorrelation and independance boils down to having Jensen in the correct direction...
01.02.2025 11:50 — 👍 9 🔁 0 💬 0 📌 0Yes I agree, but still, its nice :)
01.02.2025 11:48 — 👍 2 🔁 0 💬 2 📌 0Very cute.
01.02.2025 10:58 — 👍 4 🔁 0 💬 0 📌 0This is due to a beautiful and little-known covariance identity by Hoeffding (1940):
Cov(x,y) = ∫∫[F(x, y) - F(x)*F(y)] dxdy
So the difference between independence and uncorrelated-ness comes down to point-wise equality vs. a (weaker) integral equality between the CDFs.
2/2
I do not think so, here it integrates product of primitives (cumulative functions). Also it only works for 1d variables (I guess).
01.02.2025 10:58 — 👍 1 🔁 0 💬 1 📌 0A cute result from Valérie’s work is that Gaussian distributions remain closed under evolution by attentions layers, allowing one to study an ODE in the (mean, covariance) space. In particular, this enables the analysis of the “clustering of tokens” toward low-rank covariances.
01.02.2025 09:54 — 👍 5 🔁 2 💬 0 📌 0Titouan Vayer and I are organizing a one day workshop on optimal transport and machine learning in ENS Lyon on Feb. 17. Registration is free but mandatory. The incredible keynote speakers are Laetitia Chapel, Filippo Santambrogio and @brunolevy01.bsky.social. gdr-iasis.cnrs.fr/reunions/tra...
17.01.2025 17:12 — 👍 19 🔁 12 💬 3 📌 0