Yes I agree. In 1D the global convergence result is known bc the energy is displacement convex, but not in higher dimension. So it could be the case that there exists adversarial targets.
15.11.2025 15:02 — 👍 0 🔁 0 💬 0 📌 0@gabrielpeyre.bsky.social
Yes I agree. In 1D the global convergence result is known bc the energy is displacement convex, but not in higher dimension. So it could be the case that there exists adversarial targets.
15.11.2025 15:02 — 👍 0 🔁 0 💬 0 📌 0Also, the curves were wrong, they did not start from the first set of points ... As a side comment, it is quite amazing that they are almost not stuck in local minima and almost all end up at the target points.
15.11.2025 11:04 — 👍 5 🔁 0 💬 1 📌 0I have updated my "Optimal Transport for Machine Learners" repository with a Pytorch illustration of Wasserstein gradient flows on pairwise interaction functionals (MMD distances) github.com/gpeyre/ot4ml
14.11.2025 10:56 — 👍 40 🔁 4 💬 1 📌 1It is true! Means that can be approximated by first taking harmonic and then arithmetic means are exactly the scalar Kubo-Ando means. A homogeneous mean m is of this type iff r \mapsto m(1,r)/r is operator monotone on. For m(x,y)=((x^p+y^p)/2)^{1/p}, this holds precisely when -1 \le p \le 1.
30.10.2025 08:22 — 👍 1 🔁 0 💬 0 📌 0It is in the closure for p in {-1,0,1} so it must be true for all p in [-1,1]... or maybe not...
29.10.2025 20:46 — 👍 0 🔁 0 💬 1 📌 0What is the set of "means" one can approximate using only arithmetic and harmonic means ? For instance the geometric mean belongs to this closure, but can one approximate any mean sandwitched between the two?
29.10.2025 11:16 — 👍 4 🔁 0 💬 1 📌 0KL to a Gaussian target, (entropic) Wasserstein distance to a Gaussian. This invariance makes Gaussians an exceptionally handy test case.
27.09.2025 12:30 — 👍 6 🔁 0 💬 1 📌 0Thought of the day: It is somewhat mysterious why Gaussians remain stable under the particle-minimizing flow (i.e. the Wasserstein gradient flow) for so many widely used energies: entropy, Fisher information, quadratic interaction potentials, functionals depending only on mean and covariance,
27.09.2025 12:30 — 👍 18 🔁 2 💬 1 📌 0#Communiqué 🗞️ La médaille d'or 2025 du CNRS est décernée à Stéphane Mallat, mondialement reconnu pour ses travaux autour des mathématiques appliquées au traitement du signal et à l’intelligence artificielle. 👏
👉 cnrs.fr/fr/presse/en...
#TalentsCNRS 🏅
Symmetric and positive (invertible) matrices.
10.08.2025 12:47 — 👍 2 🔁 0 💬 0 📌 0To meditate while resting on the beach...
09.08.2025 11:15 — 👍 11 🔁 0 💬 1 📌 0Fun (...) fact: the only linear operators on matrices that preserves the rank are X->AXB, where A and B are invertible (with X->X^T in the square case). This was apparently first proved (?) in 1959 by Marcus and Moyls.
02.07.2025 11:04 — 👍 30 🔁 2 💬 1 📌 0scPRINT is now finally on the Chan Zuckerberg Institute's Model Hub! 🎉 🧬 🌈 It is one more way you can use this cell foundation model to embed, denoise, predict cell type, get gene networks from your data from scratch, or fine-tune it on your own application / usecase: virtualcellmodels.cz...
17.06.2025 21:06 — 👍 5 🔁 1 💬 2 📌 0Oui je pense
04.06.2025 13:16 — 👍 2 🔁 0 💬 0 📌 0Le prochain Data Science Colloquium à l'ENS, jeudi 12 juin, sera donné par David Louapre d'Ubisoft, "What modern AI and neuroscience can bring to non-playing characters in video games". David c'est bien sûr également le vulgarisateur scientifique de www.youtube.com/scienceetonn...
04.06.2025 07:00 — 👍 20 🔁 4 💬 2 📌 0If one of the two distributions is an isotropic Gaussian, then flow matching is equivalent to a diffusion model. This is known as Tweedie's formula. In particular, the vector field is a gradient vector, as in optimal transport. speakerdeck.com/gpeyre/compu...
31.05.2025 10:16 — 👍 48 🔁 4 💬 1 📌 0The course is currently running on Wednesdays, you should go if you are in Paris and interested in OT! www.college-de-france.fr/fr/personne/...
25.05.2025 09:17 — 👍 8 🔁 0 💬 0 📌 1Lectures note for the course of Cyril Letrouit at Collège de France on the quantitative stability of optimal transport.
www.imo.universite-paris-saclay.fr/~cyril.letro...
I have cleaned up the notebooks for my course on Optimal Transport for Machine Learners and added links to the slides and lecture notes. github.com/gpeyre/ot4ml
25.05.2025 09:12 — 👍 59 🔁 10 💬 1 📌 0I have updated my slides on the maths of AI by an optimal pairing between AI and maths researchers ... speakerdeck.com/gpeyre/the-m...
20.05.2025 11:21 — 👍 25 🔁 3 💬 3 📌 0Mon article sur les maths de l’IA est paru dans la gazette de la smf smf.emath.fr/publications...
La version en anglais est sur arxiv
arxiv.org/abs/2501.10465
I have cleaned a bit my lecture notes on Optimal Transport for Machine Learners arxiv.org/abs/2505.06589
13.05.2025 05:18 — 👍 121 🔁 29 💬 0 📌 0Announcing : The 2nd International Summer School on Mathematical Aspects of Data Science
mathsdata2025.github.io
EPFL, Sept 1–5, 2025
Speakers:
Bach @bachfrancis.bsky.social
Bandeira
Mallat
Montanari
Peyré @gabrielpeyre.bsky.social
For PhD students & early-career researchers
Apply before May 15!
Applications are 📣OPEN📣 for #PAISS2025 THE AI summer school in #Grenoble 1-5 Sept! Speakers so far @yann-lecun.bsky.social @dimadamen.bsky.social @arthurgretton.bsky.social @gabrielpeyre.bsky.social @science4all.org A. Cristia J. Revaud M. Caron J. Carpentier M. Vladimirova ➡️ paiss.inria.fr
11.04.2025 13:44 — 👍 30 🔁 9 💬 0 📌 4The AI for Science summer school, coorganized by CNRS and U of Chicago will be in Paris, June 30th to july 4th, register asap if you want attend!
datascience.uchicago.edu/events/ai-sc...
Futur best seller!
28.03.2025 08:08 — 👍 37 🔁 6 💬 2 📌 0Characterizing finely the decay of eigenvalues of kernel matrices: many people need it, but explicit references are hard to find. This blog post reviews amazing asymptotic results from Harold Widom (1963!) and proposes new non-asymptotic bounds.
francisbach.com/spectrum-ker...
I am biased toward the SURE, I won’t take the risk to estimate without Stein.
20.03.2025 14:03 — 👍 1 🔁 0 💬 0 📌 0⚡️Check out our workshop tomorrow at @lpiparis.bsky.social, great speakers (@gabrielpeyre.bsky.social, @sdascoli.bsky.social, @samillingworth.com & many more) will cover Theory and Applications of Generative AI + Connexions with neuroscience 🧠
And there's food 🍰
➡️ genai-conference-website.vercel.app
Video de l’exposé niveau collège (en français...) youtu.be/F-MRgm6OE54
10.02.2025 21:12 — 👍 24 🔁 2 💬 2 📌 0