Stefan Scholz's Avatar

Stefan Scholz

@stefan-scholz.bsky.social

Doctoral Researcher | Data and Machine Learning Enthusiast

32 Followers  |  20 Following  |  5 Posts  |  Joined: 02.06.2024  |  1.5184

Latest posts by stefan-scholz.bsky.social on Bluesky

Post image

๐Ÿ“ฃ Happy to announce the publication of our article (w @nilsweidmann.bsky.social, @friederikeq.bsky.social, @sebnagel.bsky.social, @yannistheocharis.bsky.social & Molly Roberts) on the complexity and availability of community guidelines @icwsm.bsky.social! ๐Ÿ”— ojs.aaai.org/index.php/IC...

10.06.2025 11:36 โ€” ๐Ÿ‘ 8    ๐Ÿ” 3    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 1

๐Ÿšจ๐Ÿš€ Looking for a comparative dataset on social media platforms? Weโ€™re excited to launch COMPARE! This is a collaborative effort by @nilsweidmann.bsky.social , @friederikeq.bsky.social , @sebnagel.bsky.social , @yannistheocharis.bsky.social & Molly Roberts. ๐Ÿงตโคต๏ธ (1/5)

28.05.2025 08:39 โ€” ๐Ÿ‘ 12    ๐Ÿ” 4    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

Sharing our new preprint "An Image is Worth K Topics: A Visual Structural Topic Model with Image Embeddings" with @mansmag.bsky.social @matmagnani.bsky.social Alexandra Segerberg and Nataลกa Sladoje. Available on ArXiv: arxiv.org/abs/2504.10004

20.04.2025 18:24 โ€” ๐Ÿ‘ 9    ๐Ÿ” 6    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Postdoctoral Position in Computational Social Science Deadline: 15.03.2025

Want to work with us? stellen.uni-konstanz.de/jobposting/8...

04.03.2025 16:35 โ€” ๐Ÿ‘ 20    ๐Ÿ” 25    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

Now in FirstView: โ€œImproving Computer Vision Interpretability: Transparent Two-Level Classification for Complex Scenes.โ€ @stefan-scholz.bsky.social, @nilsweidmann.bsky.socialโ€ฌ, @zacharyst.bsky.social, @keremoglu.bsky.social, and Bastian Goldlรผcke propose a two-level method for image classification.

09.12.2024 17:30 โ€” ๐Ÿ‘ 8    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Improving Computer Vision Interpretability: Transparent Two-Level Classification for Complex Scenes | Political Analysis | Cambridge Core Improving Computer Vision Interpretability: Transparent Two-Level Classification for Complex Scenes

Finally out in @polanalysis.bsky.social (w/ @stefan-scholz.bsky.social, @zacharyst.bsky.social, @keremoglu.bsky.social and Bastian Goldlรผcke): "Improving Computer Vision Interpretability: Transparent Two-Level Classification for Complex Scenes" Available #OpenAccess at doi.org/10.1017/pan....

09.12.2024 10:26 โ€” ๐Ÿ‘ 15    ๐Ÿ” 5    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1
Preview
Protest Segments - a Hugging Face Space by ciass Discover amazing ML apps made by the community

Do you want to try out the method with your own images? Here is our free demo application. huggingface.co/spaces/ciass...

25.10.2024 10:02 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

The novelty of this method is that it provides new insights for comparative politics: While persons, flags and signboard are important objects in protest images, particular features of protest differ across countries and protest episodes. Our method can detect these.

25.10.2024 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Our method detects objects present in images, creates feature vectors from those objects and uses them as input for machine learning classifiers. We tested this on a new dataset of 140k images to predict which ones show protest. The accuracy is roughly on par with popular CNNs.

25.10.2024 09:59 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

While existing classifiers for images reach high levels of accuracy, it is difficult to systematically assess the visual features on which they base their classification. This problem is especially pressing for complex images that contain many different types of objects.

25.10.2024 09:59 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Improving Computer Vision Interpretability: Transparent Two-level Classification for Complex Scenes Treating images as data has become increasingly popular in political science. While existing classifiers for images reach high levels of accuracy, it is difficult to systematically assess the visual f...

New paper forthcoming in PA, w/ @nilsweidmann.bsky.social, @zacharyst.bsky.social, @keremoglu.bsky.social and Bastian Goldlรผcke! We propose a method that makes image classification more transparent by identifying which objects on images are related to the outcome. Preprint: arxiv.org/abs/2407.03786

25.10.2024 09:58 โ€” ๐Ÿ‘ 7    ๐Ÿ” 5    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

@stefan-scholz is following 20 prominent accounts