Qdrant's Avatar

Qdrant

@qdrant.bsky.social

Vector Database & Search Engine

216 Followers  |  13 Following  |  65 Posts  |  Joined: 13.11.2024  |  2.0683

Latest posts by qdrant.bsky.social on Bluesky

Preview
miniCOIL: on the Road to Usable Sparse Neural Retrieval - Qdrant Introducing miniCOIL, a lightweight sparse neural retriever capable of generalization.

This is really neat. I really like the way that Qdrant focuses on simplicity and performance while still trying to combine it with the insights from heavier machine learning innovations for meaning extraction and semantic search.

26.07.2025 15:42 โ€” ๐Ÿ‘ 4    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

An open source engineer from @llamaindex.bsky.social shares trial-and-error-learned lessons.

For anyone implementing textual RAG, check the blog by @cle-does-things.bsky.social!
โœ… useful tips, from chunking to evals-related;
โœ… projects applying each tip in the wild.

๐Ÿ‘‰ qdrant.tech/blog/hitchhi...

10.07.2025 14:52 โ€” ๐Ÿ‘ 3    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 1
Preview
Qdrant + DataTalks.Club: Free 10-Week Course on LLM Applications - Qdrant Gain hands-on experience with RAG, vector search, evaluation, monitoring, and more.

Free 10-week course! Learn RAG, vector search, hybrid search, evaluation, and more. Hands-on lessons from Qdrantโ€™s experts.

Learn more ๐Ÿ‘‰ย qdrant.tech/blog/datatal...

10.06.2025 15:14 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

@mrscoopers.bsky.social and Kacper ลukawski will be there June 16-17 in Berlin, so if you're into vector search and want to chat over coffee, come find us! Plus Jenny's giving a talk about miniCOIL - our new sparse retrieval model that's pretty cool ๐Ÿš€

Coffee + vector databases = perfect combo โ˜•

10.06.2025 08:20 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

โ˜• Guess what? We're sponsoring the coffee breaks at @berlinbuzzwords.de 2025!

10.06.2025 08:20 โ€” ๐Ÿ‘ 3    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

โฐ ๐Ž๐ง๐ž ๐ฐ๐ž๐ž๐ค ๐ญ๐ข๐ฅ๐ฅ ๐๐ž๐ซ๐ฅ๐ข๐ง ๐๐ฎ๐ณ๐ณ๐ฐ๐จ๐ซ๐๐ฌ
I'll really try to make my talk (on the 17th at 11:10 am in Kesselhaus) fit this "๐˜๐˜ฎ๐˜ฎ๐˜ฎ๐˜ฎ, ๐˜ ๐˜ด๐˜ฉ๐˜ฐ๐˜ถ๐˜ญ๐˜ฅ ๐˜ต๐˜ณ๐˜บ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ณ๐˜ฏ" vibe of @berlinbuzzwords.de!
To TLDR, it's about making ๐ฌ๐ฉ๐š๐ซ๐ฌ๐ž ๐ฉ๐š๐ซ๐ญ ๐ข๐ง ๐ก๐ฒ๐›๐ซ๐ข๐ ๐ฌ๐ž๐š๐ซ๐œ๐ก๐ž๐ฌ as ๐ซ๐ž๐ฅ๐ข๐š๐›๐ฅ๐ž as BM25, but ๐ฌ๐ž๐ฆ๐š๐ง๐ญ๐ข๐œ๐š๐ฅ๐ฅ๐ฒ ๐š๐ฐ๐š๐ซ๐ž (so ๐›๐ž๐ญ๐ญ๐ž๐ซ than BM25)

09.06.2025 12:28 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Bavaria, Advancements in SEarch Development (BASED) Meetup ยท Luma Meetup Description: Search is evolving fast. From new algorithms and tools to AI-driven solutions, the field is constantly shifting.ย BASED Meetup is whereโ€ฆ

Join for:

โœ…ย practical advice on vector search in daily #AI developerโ€™s life from our & @llamaindex.bsky.social beloved star Clelia Astra Bertelli
โœ…ย research insights on the role of multimodality in industrial #RAG from Monica Riedler, amazing PhD at @tum.deโ€ฌ

Register here
๐Ÿ‘‰ย lu.ma/cyelt1n6

02.06.2025 13:20 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

๐Ÿฅจ Come to the Bavarian Search Meetup!

The 2nd meeting of ๐avaria, ๐€dvancements in ๐’๐žarch ๐ƒevelopment meetup, co-organized by our @mrscoopers.bsky.social, is happening in #Munich on the 12th of June!

๐Ÿ‘‡

02.06.2025 13:20 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
spot art.
text reads: Announcing .NET AI Chat Web App Template

spot art. text reads: Announcing .NET AI Chat Web App Template

Create smart chat apps with custom data and enjoy easy setup in Visual Studio, VS Code, or CLI.

Preview 2 of the .NET AI Template is here, and now it's easier than ever to build cloud-native #AI apps with #dotNETAspire and #Qdrant vector DB integration. Learn. https://msft.it/63326S1eg4

25.04.2025 14:05 โ€” ๐Ÿ‘ 4    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Yeah! @qdrant.bsky.social ๐Ÿ˜ .NET AI :)

25.04.2025 14:29 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
๐Ÿš€ Building a RAG API with .NET, Semantic Kernel, Phi-3, and Qdrant: Enrich Your E-commerce Experience Learn how to build a powerful RAG (Retrieval-Augmented Generation) API using .NET, Microsoft Semantic Kernel, Phi-3, and Qdrant. Combine your private e-commerce data with LLMs to create smarter, grโ€ฆ

๐Ÿš€ Build a real RAG API with .NET 8, Semantic Kernel, Phi-3, and Qdrant!

๐ŸŽฏ Enrich LLMs with real product data
โš™๏ธ Local ONNX inference with Phi-3
๐Ÿ”ฅ Full API endpoints ready!

Dive into the architecture ๐Ÿ‘‰ wp.me/p29SK-Yu

#DotNet #SemanticKernel #RAG #Qdrant #Phi3 #AI #MachineLearning #ONNX

22.04.2025 21:01 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

Want to see MCP in action? Learn how to orchestrate OpenAI agents using MCP, AugmentCode, and Qdrant.

๐Ÿ“… April 29 @ 11 am ET

๐Ÿ”— Save your spot: try.qdrant.tech/mcp-agent-in...

14.04.2025 17:21 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Relevance Feedback in Informational Retrieval - Qdrant Relerance feedback: from ancient history to LLMs. Why relevance feedback techniques are good on paper but not popular in neural search, and what we can do about it.

The article explores the gap between theory and practice โ€” and why relevance feedback hasn't made it yet into neural search at scale.

If you're building or working with retrieval systems, itโ€™s worth a read.

๐Ÿ‘‰ qdrant.tech/articles/sea...

02.04.2025 15:30 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

Relevance feedback helps search systems iteratively improve results toward relevance. Itโ€™s been studied for 60+ years โ€” yet remains rare in modern neural search.

We explored the field to understand why โ€” and gathered this summary of methods proposed over the years.

โฌ‡๏ธ

02.04.2025 15:30 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

MCP week: Learn to use LlamaIndex to prep docs for Claude with a pre-built MCP server for @qdrant.bsky.social, using @angular.dev docs. Set up vector DB, process AI-friendly docs, configure MCP server, implement RAG pipeline:
https://www.aiboosted.dev/p/building-your-own-rag-system-typescript

28.03.2025 22:38 โ€” ๐Ÿ‘ 5    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Large Scale Search - Qdrant Qdrant is an Open-Source Vector Database and Vector Search Engine written in Rust. It provides fast and scalable vector similarity search service with convenient API.

๐Ÿงต Tutorial: qdrant.tech/documentatio...
๐Ÿ“ Code: github.com/qdrant/laion...

28.03.2025 15:05 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Large Scale Search - Qdrant Qdrant is an Open-Source Vector Database and Vector Search Engine written in Rust. It provides fast and scalable vector similarity search service with convenient API.

We documented everything: memory estimates, observed metrics, config breakdowns, and open-sourced all the scripts.

๐Ÿงต Tutorial: qdrant.tech/documentatio...
๐Ÿ“ Code: github.com/qdrant/laion...

28.03.2025 15:05 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Here's what we ran:
โœ… Stored vectors as FLOAT16 instead of FLOAT32
โœ… Used binary quantization to keep compressed vectors in RAM
โœ… Kept full-precision vectors on disk for query-time rescoring
โœ… Tuned HNSW for lower memory
โœ… Enabled async disk I/O with io_uring to parallelize reads

28.03.2025 15:05 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

๐Ÿšง We ran vector search over 400M CLIP embeddings from LAION-400M โ€” using Qdrant and just 64GB RAM.

We wanted to see how far we could push Qdrant with minimal hardware and how much we could squeeze out of quantization, indexing, and async I/O.

28.03.2025 15:05 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Built for Vector Search - Qdrant Why add-on vector search looks good โ€” until you actually use it.

Our opinion on this qdrant.tech/articles/ded...

28.03.2025 14:44 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Let us know how it goes. ๐Ÿฟ

28.03.2025 14:42 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Built for Vector Search - Qdrant Why add-on vector search looks good โ€” until you actually use it.

qdrant.tech/articles/ded...

19.02.2025 16:56 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

A lot of people ask us: โ€œ๐—ช๐—ต๐˜† ๐˜€๐—ต๐—ผ๐˜‚๐—น๐—ฑ ๐—œ ๐˜‚๐˜€๐—ฒ ๐—ฎ ๐—ฑ๐—ฒ๐—ฑ๐—ถ๐—ฐ๐—ฎ๐˜๐—ฒ๐—ฑ ๐˜ƒ๐—ฒ๐—ฐ๐˜๐—ผ๐—ฟ ๐—ฑ๐—ฎ๐˜๐—ฎ๐—ฏ๐—ฎ๐˜€๐—ฒ when I can simply add a vector plugin or extension to my existing database?โ€

We wrote an article addressing this very common question.

Article: qdrant.tech/articles/ded...

19.02.2025 16:56 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Optimizing Memory for Bulk Uploads - Qdrant Efficient memory management is key when handling large-scale vector data. Learn how to optimize memory consumption during bulk uploads in Qdrant and keep your deployments performant under heavy load.

If you're working with large-scale vector ingestion, you should know how to manage memory efficiently.

๐Ÿ‘‰ Learn the best practices for optimizing memory in Qdrant: qdrant.tech/articles/ind...

18.02.2025 08:26 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Talks include:

โœ… Scaling AI agents with vector search and RAG
โœ… AI agents for workflow automation
โœ…Strategic value of AI agents in the enterprise
โœ… AI performance monitoring and impact measurement
โœ… Orchestrating AI agents with low-code automation

07.02.2025 16:26 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Qdrant AI Builders: Agents in the Enterprise @ AWS Loft with Arize, CrewAI, and n8n ยท Luma Join Qdrant, Arize, CrewAI, n8n, and AWS for an evening event tailored for executives and business leaders to explore the strategic value, possibilities, andโ€ฆ

Qdrant AI Builders: Agents in the Enterprise @ AWS Loft

With @arize.bsky.social, CrewAI, and @n8n.io ๐Ÿš€

An evening for executives and technical leaders to explore AI agents and RAG in the enterprise.

๐Ÿ”—RSVP: lu.ma/etufeex8?tk=...

๐Ÿ“… Monday, February 10

07.02.2025 16:26 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Regions are just logical boundaries within the bitmask, the value can span more than one region by design. Thatโ€™s why the gaps include leading and trailing, so that we can combine them when looking for a large gap.

07.02.2025 16:21 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

We use u32 as internal ID, whose sequence is unique to each segment.

07.02.2025 16:21 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Bustle benchmark was run single-threaded, because we use our segments single-threaded.

07.02.2025 16:20 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Code: github.com/qdrant/qdran...

(not yet on master because of the rename, otherwise just look for blob_store )

07.02.2025 16:20 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

@qdrant is following 13 prominent accounts