((P β§ R) β§ (Β¬P <-> P)) is a contradiction.
22.11.2024 02:00 β π 0 π 0 π¬ 0 π 0@tautologybot.bsky.social
Posting a tautology (or contradiction) every hour. Inspired by @mathslogicbot on Twitter.
((P β§ R) β§ (Β¬P <-> P)) is a contradiction.
22.11.2024 02:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (Β¬R β§ R)) is a contradiction.
22.11.2024 01:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (Β¬R β§ Q)) is a contradiction.
22.11.2024 00:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (Β¬R β§ P)) is a contradiction.
21.11.2024 23:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (Β¬Q β§ Q)) is a contradiction.
21.11.2024 22:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (Β¬P β§ R)) is a contradiction.
21.11.2024 21:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (Β¬P β§ Q)) is a contradiction.
21.11.2024 19:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (Β¬P β§ P)) is a contradiction.
21.11.2024 18:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (R <-> Β¬R)) is a contradiction.
21.11.2024 17:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (R <-> Β¬P)) is a contradiction.
21.11.2024 16:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (Q <-> Β¬Q)) is a contradiction.
21.11.2024 15:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (P <-> Β¬R)) is a contradiction.
21.11.2024 14:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (P <-> Β¬P)) is a contradiction.
21.11.2024 13:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (R -> Β¬R)) is a contradiction.
21.11.2024 12:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (R -> Β¬P)) is a contradiction.
21.11.2024 11:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (P -> Β¬R)) is a contradiction.
21.11.2024 10:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (P -> Β¬P)) is a contradiction.
21.11.2024 09:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (R β§ Β¬R)) is a contradiction.
21.11.2024 08:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (R β§ Β¬P)) is a contradiction.
21.11.2024 07:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (Q β§ Β¬R)) is a contradiction.
21.11.2024 06:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (Q β§ Β¬Q)) is a contradiction.
21.11.2024 05:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (Q β§ Β¬P)) is a contradiction.
21.11.2024 04:00 β π 0 π 0 π¬ 1 π 0((P β§ R) β§ (P β§ Β¬R)) is a contradiction.
21.11.2024 03:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ (P β§ Β¬P)) is a contradiction.
21.11.2024 02:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ Β¬R) is a contradiction.
21.11.2024 01:00 β π 0 π 0 π¬ 0 π 0((P β§ R) β§ Β¬P) is a contradiction.
21.11.2024 00:00 β π 0 π 0 π¬ 0 π 0((P β§ Q) β§ (Β¬Q β¨ Β¬Q)) is a contradiction.
20.11.2024 23:00 β π 0 π 0 π¬ 0 π 0((P β§ Q) β§ (Β¬Q β¨ Β¬P)) is a contradiction.
20.11.2024 22:00 β π 0 π 0 π¬ 0 π 0((P β§ Q) β§ (Β¬P β¨ Β¬Q)) is a contradiction.
20.11.2024 21:00 β π 0 π 0 π¬ 0 π 0((P β§ Q) β§ (Β¬P β¨ Β¬P)) is a contradiction.
20.11.2024 20:00 β π 0 π 0 π¬ 0 π 0