IAMJB's Avatar

IAMJB

@iamjbd.bsky.social

๐Ÿค— ML at Hugging Face ๐ŸŒฒ Academic Staff at Stanford University (AIMI Center) ๐Ÿฆด Radiology AI is my stuff

1,801 Followers  |  1,186 Following  |  94 Posts  |  Joined: 16.11.2024  |  2.0661

Latest posts by iamjbd.bsky.social on Bluesky

This work builds on our recent study on Automated Structured Radiology Report Generation (x.com/IAMJBDEL/st...) which introduces the dataset and evaluation framework.

12.06.2025 14:17 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Huge thanks to the amazing team at Stanford Center for Artificial Intelligence in Medicine and Imaging (AIMI): Johannes Moll, Louisa Fay, @asfandyar_azhar, @SophieOstmeier, Tim Lueth, Sergios Gatidis, @curtlanglotz

12.06.2025 14:17 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Structuring with Lightweight Models - a StanfordAIMI Collection

๐Ÿ“„ Paper: arxiv.org/abs/2506.00200
๐ŸŒ Project Page: stanford-aimi.github.io/structuring...
๐Ÿค— Models & Data: huggingface.co/collections...
All models and datasets are fully open-source โ€” we hope this contributes to the broader medical AI community! ๐Ÿค

12.06.2025 14:17 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

We benchmark lightweight models (<300M params) against state-of-the-art LLMs (up to 70B params), using human-reviewed test data and clinically grounded evaluation metrics. Our results highlight the strong potential of specialized, efficient models in clinical NLP application.

12.06.2025 14:17 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

๐Ÿ’ฅ Excited to share our latest work: Structuring Radiology Reports: Challenging LLMs with Lightweight Models

In this study, we explore how small, task-specific encoder-decoder models can rival (and sometimes outperform) much larger LLMs; all while being faster, cheaper, and easier to deploy.

ons.

12.06.2025 14:17 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Structured Radiology Reports - a StanfordAIMI Collection

Paper, soon to appear at #ACL2025 main: arxiv.org/pdf/2505.24223
Project page, with all resources (datasets, models, ontology) and usage notes: stanford-aimi.github.io/srrg.html
All models and datasets are publicly available as open-source:
huggingface.co/collections...

09.06.2025 15:13 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

4) We conduct a reader study to create a radiologist-validated test set for both the automated structured radiology report task, as well as utterances disease labels from our new ontology.

Finally, external evaluation is conducted using out-of-institution data by @hopprai.

09.06.2025 15:13 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

3) We fine-tune popular RRG system on this restructured findings and impression, namely:
- Chexagent @StanfordAIMI
- MAIRA-2 @MSFTResearch
- RaDialog @TU_Muenchen
- Chexpert-plus @StanfordAIMI

As well as a BERT architecture for the disease classification system on our new ontology.

09.06.2025 15:13 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

2) Since each reported observation, whether in the findings or impression sections, is expressed as a single utterance (1.5M unique utterances in total), we use a large language model to label each one according to a new ontology comprising 72 critical chest X-ray (CXR) observations.

09.06.2025 15:13 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

1) We leverage LLM to restructure MIMIC-CXR and Chexpert-plus (180K Findings sections and 400K Impression sections) into reports categorized by organ system, under strict rules.

09.06.2025 15:13 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

๐Ÿ’ฅ We unveil our paper accepted at the #ACL2025 Main Conference:
Automated Structured Report Generation

Let's revisit automated radiology report generation for CXR.
Free-form reports make it hard for AI systems to learn accurate generation, and even harder to evaluate. ๐Ÿงต๐Ÿ‘‡
@StanfordAIMI @hopprai

09.06.2025 15:13 โ€” ๐Ÿ‘ 7    ๐Ÿ” 3    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Sociodemographic biases in medical decision making by large language models Nature Medicine - A panel of nine LLMs was exposed to simulated clinical cases with switched sociodemographic features exploring ethnic, social, sexual orientation and gender dimensions and showed...

Sociodemographic biases in medical decision making by large language models
www.nature.com/articles/s4...

16.04.2025 16:18 โ€” ๐Ÿ‘ 7    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 1
Preview
IAMJB/chexpert-mimic-cxr-impression-baseline ยท Hugging Face Weโ€™re on a journey to advance and democratize artificial intelligence through open source and open science.

Just noticed our lightweight RRG model has been downloaded over 92,000 times this months on ๐Ÿค—HuggingFace. This model was included in the CheXpert-Plus release and contains just 67 million parameters:
huggingface.co/IAMJB/chexpe...
Its also a top ranking model on RexRank (rexrank.ai)

14.03.2025 20:55 โ€” ๐Ÿ‘ 8    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

๐Ÿงต What if AI could learn from millions of unlabeled radiology images and reportsโ€”and then flexibly adapt to new clinical tasks? In a new comprehensive review in
@radiology_rsna, colleagues at stanford dive into how foundation models (FMs) are set to revolutionize radiology!

10.03.2025 22:44 โ€” ๐Ÿ‘ 18    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 1
Post image

"Second, we develop budget forcing to control test-time compute by forcefully terminating the model's thinking process or lengthening it by appending "Wait" multiple times to the model's generation when it tries to end."

What a trick...

03.02.2025 17:54 โ€” ๐Ÿ‘ 14    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

Is this the last benchmark before AGI? Humanity's Last Exam (HLE)

๐Ÿคฏย 3,000 expert-level questionsย acrossย 100+ subjects, created by nearlyย 1,000 subject matter expertsย globally.

25.01.2025 19:00 โ€” ๐Ÿ‘ 11    ๐Ÿ” 2    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0
Video thumbnail

DeepSeek-R1: next level

25.01.2025 05:14 โ€” ๐Ÿ‘ 14    ๐Ÿ” 1    ๐Ÿ’ฌ 3    ๐Ÿ“Œ 0

๐Ÿฑ. Working Memory: Compiles long-term and task memory to create the final prompt for the LLM.

Typically, 1โ€“3 = Long-Term Memory; 5 = Short-Term Memory.

Thoughts on agent memory?๐Ÿ‘‡

24.01.2025 17:50 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

๐Ÿฎ. Semantic Memory: External/grounding knowledge or self-knowledge, similar to RAG context.
๐Ÿฏ. Procedural Memory: System setup details like prompts, tools, and guardrails (stored in Git/registries).
๐Ÿฐ. Task Memory: Info retrieved from long-term storage for immediate tasks.

24.01.2025 17:50 โ€” ๐Ÿ‘ 3    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

๐—” ๐—ฆ๐—ถ๐—บ๐—ฝ๐—น๐—ฒ ๐—š๐˜‚๐—ถ๐—ฑ๐—ฒ ๐˜๐—ผ ๐—”๐—œ ๐—”๐—ด๐—ฒ๐—ป๐˜ ๐— ๐—ฒ๐—บ๐—ผ๐—ฟ๐˜† ๐ŸŒŸ

An agent's memory helps it plan and react by leveraging past interactions or external data via prompt context. Hereโ€™s a breakdown:

๐Ÿญ. Episodic Memory: Logs past actions/interactions (e.g., stored in a vector database for semantic search).

24.01.2025 17:50 โ€” ๐Ÿ‘ 11    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Video thumbnail

๐Ÿงฉ The future of creativity is elemental. โœจ

Kling AI just announced Elements

๐ŸŒŽ First, world building:
Craft your characters, environments, props. Plan your motion and VFX.
๐ŸŽ›๏ธ Then, remixing:
Bring it all together into a cohesive story.

19.01.2025 18:09 โ€” ๐Ÿ‘ 7    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image 17.01.2025 19:00 โ€” ๐Ÿ‘ 16    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Oops. Thanks!

16.01.2025 21:37 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image


Amazing. Agent Roles:
โ›ณ PhD Agent: Conducts literature reviews, interprets results, writes reports.
โ›ณ Postdoc Agent: Plans research, designs experiments.
โ›ณ ML Engineer Agent: Prepares data, writes, optimizes code.
โ›ณ Professor Agent: Oversees, refines reports.

16.01.2025 18:00 โ€” ๐Ÿ‘ 10    ๐Ÿ” 2    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0
Post image

MiniMax-01 is Now Open-Source: Scaling Lightning Attention for the AI Agent Era
>> Hybrid linear-softmax attention working very well at large scale and long-context
filecdn.minimax.chat/_Arxiv_MiniM...

15.01.2025 22:33 โ€” ๐Ÿ‘ 7    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

first look into what the Qwen team used to develop QwQ
arxiv.org/pdf/2501.07301

15.01.2025 04:38 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Video thumbnail

Neat: Representing Long Volumetric Video with Temporal Gaussian Hierarchy

Contrib: Temporal Gaussian Hierarchy representation for long volumetric video.

14.01.2025 02:32 โ€” ๐Ÿ‘ 8    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Video thumbnail

Nice visualization of RAG vs. Agentic RAG

13.01.2025 17:37 โ€” ๐Ÿ‘ 6    ๐Ÿ” 2    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0
Preview
GitHub - CatchTheTornado/text-extract-api: Document (PDF, Word, PPTX ...) extraction and parse API using state of the art modern OCRs + Ollama supported models. Anonymize documents. Remove PII. Conver... Document (PDF, Word, PPTX ...) extraction and parse API using state of the art modern OCRs + Ollama supported models. Anonymize documents. Remove PII. Convert any document or picture to structured ...

github.com/CatchTheTorn...

12.01.2025 04:33 โ€” ๐Ÿ‘ 4    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

Neat. Converts images, PDFs, and Office documents to Markdown or JSON using OCR and LLM models, with features for caching, distributed processing, and PII removal

12.01.2025 04:33 โ€” ๐Ÿ‘ 23    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

@iamjbd is following 20 prominent accounts