Lakshya A Agrawal's Avatar

Lakshya A Agrawal

@lakshyaaagrawal.bsky.social

PhD @ucberkeleyofficial.bsky.social | Past: AI4Code Research Fellow @msftresearch.bsky.social | Summer @EPFL Scholar, CS and Applied Maths @IIITDelhi | Hobbyist Saxophonist https://lakshyaaagrawal.github.io Maintainer of https://aka.ms/multilspy

761 Followers  |  3,535 Following  |  36 Posts  |  Joined: 22.11.2024  |  2.1344

Latest posts by lakshyaaagrawal.bsky.social on Bluesky

Stop what you are doing and try out GEPA now!

"GEPA: Reflective Prompt Evolution Can Outperform Reinforcement Learning" presents such elegant ideas by a collection of amazing researchers!

Here is a tldr of how it works:

21.10.2025 15:03 โ€” ๐Ÿ‘ 3    ๐Ÿ” 2    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

GEPA (Genetic-Pareto) is a sample-efficient prompt optimization method for compound AI systems that works by reflectively evolving prompts using natural language feedback instead of traditional scalar rewards.

21.10.2025 15:03 โ€” ๐Ÿ‘ 2    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

In each iteration, GEPA samples system rollouts (including reasoning traces, tool outputs, and any diagnostic text), reflects on them via an LLM to identify issues or propose improvements, and updates specific module prompts accordingly based on the feedback.

21.10.2025 15:03 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

To ensure diversity and avoid local optima, GEPA maintains a pool of candidates and uses Pareto-based selection, which keeps all non-dominated strategies discovered so far and stochastically proposes new prompt variants, enabling robust generalization with far fewer rollouts than reinforcement

21.10.2025 15:03 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
1. GEPA Overview - DSPy The framework for programmingโ€”rather than promptingโ€”language models.

GEPA: prompt optimization can exceed RL performance

They used Qwen3-8B (which was not trained for math, coding, agency, etc.) and show that GEPA performed better than RL rollouts

paper: arxiv.org/abs/2507.19457

github: github.com/gepa-ai/gepa

DSPy docs: dspy.ai/api/optimize...

22.10.2025 11:55 โ€” ๐Ÿ‘ 20    ๐Ÿ” 4    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Automating Agentic Prompts: A new algorithm called GEPA, developed by researchers at UC Berkeley, Stanford, and other institutions, improves the performance of agentic systems by automatically refining their prompts.

23.10.2025 19:30 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Original post on sigmoid.social

AGI is just around the corner!

I'm learning to use DSPy with GEPA (Genetic-Pareto) prompt optimization. In GEPA a larger "teacher" LLM adjusts the prompt for a smaller "student" LM to perform a specific task as well as possible. The teacher will try many different prompts and evaluate the [โ€ฆ]

30.09.2025 06:56 โ€” ๐Ÿ‘ 2    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Hey, would love to get any feedback on how you'd think about improving the interface

17.10.2025 17:01 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Agentๅคšๆญฅ่ชคๅทฎๅ’‹็ ด๏ผŸ็œ‹ไธ‹GEPA๏ผŒๅๆ€่‡ช้€ฒๅŒ– ๅธ•็ดฏ่จ—ๅ‰ๆฒฟ๏ผŒ่ถ…้ŽDSPy็š„MIPROv2 ไพ†่‡ชUC Berkeley๏ผŒๆ–ฏๅฆ็ฆ็š„Genetic-Pareto Prompt Optimizer

Agentๅคšๆญฅ่ชคๅทฎๅ’‹็ ด๏ผŸ็œ‹ไธ‹GEPA๏ผŒๅๆ€่‡ช้€ฒๅŒ– ๅธ•็ดฏ่จ—ๅ‰ๆฒฟ๏ผŒ่ถ…้ŽDSPy็š„MIPROv2 #ๅๆ€ #่ชคๅทฎ #่ถ…้Ž

04.10.2025 15:25 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Just what I was looking for. Thank you for sharing, looking forward to the read.

28.09.2025 00:58 โ€” ๐Ÿ‘ 2    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
GEPA: Reflective Prompt Evolution Can Outperform Reinforcement Learning Large language models (LLMs) are increasingly adapted to downstream tasks via reinforcement learning (RL) methods like Group Relative Policy Optimization (GRPO), which often require thousands of rollo...

propose and test prompt updates, and combine complementary lessons from the Pareto frontier of its own attempts.

arxiv.org/abs/2507.19457

28.09.2025 00:27 โ€” ๐Ÿ‘ 8    ๐Ÿ” 2    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

DSPy folks love GEPA, so here's a GEPA paper for anyone who wants to learn more.

Given any AI system containing one or more LLM prompts, GEPA samples system-level trajectories (e.g., reasoning, tool calls, and tool outputs) and reflects on them in natural language to diagnose problems,

28.09.2025 00:27 โ€” ๐Ÿ‘ 16    ๐Ÿ” 2    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
ArXiv page 7

ArXiv page 7

..GEPA and prompt optimization explained: https://arxiv.org/abs/2507.19457v1

(7/7)

28.09.2025 11:13 โ€” ๐Ÿ‘ 2    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
ArXiv page 6

ArXiv page 6

..make adapting large models more practicalโ€”especially when compute or data is limited. Itโ€™s like giving AI a way to learn from its own โ€œthinking out loud,โ€ turning natural language into a powerful tool for self-improvement.

Links:
Paper on arXiv: https://arxiv.org/abs/2507.19457 ..

(6/7)

28.09.2025 11:13 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
ArXiv page 5

ArXiv page 5

..code on the fly.

Whatโ€™s cool here is the shift from treating AI tuning as a blind search for a higher score to a reflective process that leverages the AIโ€™s native strength: language. By evolving prompts through thoughtful reflections, GEPA unlocks smarter, faster learning that could..

(5/7)

28.09.2025 11:13 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
ArXiv page 4

ArXiv page 4

..fewer attempts than traditional reinforcement learning methods. On several tough tasks like multi-step question answering and instruction following, GEPA consistently outperforms both standard reinforcement learning and previous prompt optimizers. It even shows promise for optimizing..

(4/7)

28.09.2025 11:13 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
ArXiv page 3

ArXiv page 3

..strategies by mixing and matching what works best.

GEPA treats AI prompt tuning like a conversation with itself, iterating through generations of prompts that learn from detailed feedback written in words, not just numbers. This lets it learn much more efficientlyโ€”up to 35 times..

(3/7)

28.09.2025 11:13 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
ArXiv page 2

ArXiv page 2

..what went wrong and how to fix it? Thatโ€™s the idea behind a new approach called GEPA. Instead of relying solely on those sparse reward signals, GEPA has AI inspect its own attempts using natural language reflections. It diagnoses errors, proposes prompt fixes, and evolves smarter..

(2/7)

28.09.2025 11:13 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
ArXiv page 1

ArXiv page 1

What if language itself could teach AI to get better, faster?

Most AI training feels like trial and error in the darkโ€”reinforcement learning tweaks models by chasing a number, often needing tens of thousands of tries to improve. But what if the AI could actually *talk to itself* about..

(1/7)

28.09.2025 11:13 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
gepa A framework for optimizing textual system components (AI prompts, code snippets, etc.) using LLM-based reflection and Pareto-efficient evolutionary search.

gepa 0.0.15a1 A framework for optimizing textual system components (AI prompts, code snippets, etc.) using LLM-based reflection and Pareto-efficient evolutionary search.


Origin | Interest | Match

24.09.2025 00:31 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Origin

gepa 0.0.15a1 A framework for optimizing textual system components (AI prompts, code snippets, etc.) using LLM-based reflection and Pareto-efficient evolutionary search.

Interest | Match | Feed

24.09.2025 01:09 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Origin

gepa 0.0.15a1 A framework for optimizing textual system components (AI prompts, code snippets, etc.) using LLM-based reflection and Pareto-efficient evolutionary search.

Interest | Match | Feed

24.09.2025 01:09 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Origin

gepa 0.0.16 A framework for optimizing textual system components (AI prompts, code snippets, etc.) using LLM-based reflection and Pareto-efficient evolutionary search.

Interest | Match | Feed

24.09.2025 02:02 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Origin

gepa 0.0.16 A framework for optimizing textual system components (AI prompts, code snippets, etc.) using LLM-based reflection and Pareto-efficient evolutionary search.

Interest | Match | Feed

24.09.2025 02:02 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

New research released today from Databricks shows how its GEPA (Generative Evolutionary Prompt Adaptation) technique improves prompt optimization by an order of magnitude.

venturebeat.com/ai/the-usd10...

25.09.2025 21:56 โ€” ๐Ÿ‘ 5    ๐Ÿ” 4    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image Post image

๐Ÿš€ #GEPA: Automatic #Prompt Optimization by @databricksinc.bsky.social: gpt-oss-120b beats Claude Sonnet 4 (+3%) at ~20x lower cost. Completes with DSPy SIMBA/MIPROv2
๐Ÿ“œ MIT lic
๐Ÿ”— Link in first ๐Ÿ’ฌโคต๏ธ

Repost ๐Ÿ” #AI #LLM #RAG #PromptEngineering #ContextEngineering

27.09.2025 13:11 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
GitHub - gepa-ai/gepa: Optimize prompts, code, and more with AI-powered Reflective Text Evolution Optimize prompts, code, and more with AI-powered Reflective Text Evolution - gepa-ai/gepa

โญ๏ธ๐Ÿ”— GitHub: github.com/gepa-ai/gepa
โญ๏ธ๐Ÿ”— www.databricks.com/blog/buildin...
๐Ÿ‘‰ Discuss with me in Discord: linktr.ee/qdrddr

27.09.2025 13:11 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Lessons & Practices for Building and Optimizing Multi-Agent RAG Systems with DSPy and GEPA Introduction When I first read โ€œBuilding and Optimizing Multi-Agent RAG Systems with DSPy and GEPAโ€...

Lessons & Practices for Building and Optimizing Multi-Agent RAG Systems with DSPy and GEPA https://cstu.io/cbe4bb #love #techno #future

12.09.2025 06:26 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Screenshot of the repository

Screenshot of the repository

optimizes prompts and code using AI-driven reflection and evolution

09.09.2025 22:32 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

https://github.com/gepa-ai/gepa

09.09.2025 22:32 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

@lakshyaaagrawal is following 20 prominent accounts