Pura Peetathawatchai's Avatar

Pura Peetathawatchai

@poonpura.bsky.social

M.S. Computer Science @Stanford. Interested in machine learning privacy, AI security, diffusion models, cryptography, AI for environment, healthcare, education 🌱 poonpura.github.io

12 Followers  |  12 Following  |  19 Posts  |  Joined: 23.11.2024  |  1.6426

Latest posts by poonpura.bsky.social on Bluesky

Post image

Wise words from a fellow scholar…

20.11.2025 14:57 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

πŸ™πŸ™πŸ™

27.11.2024 18:48 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

πŸŽ“ I am also applying for PhD programs this Fall! If you think I am a good fit for your lab, please contact me at pura@stanford.edu πŸ˜„

27.11.2024 18:42 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Preview
Differentially Private Adaptation of Diffusion Models via Noisy Aggregated Embeddings We introduce novel methods for adapting diffusion models under differential privacy (DP) constraints, enabling privacy-preserving style and content transfer without fine-tuning. Traditional approaches...

For details, check out our paper (feedback appreciated!):

πŸ“„: arxiv.org/abs/2411.14639
πŸ™Œ: big thank you to my collaborators and mentors Wei-Ning Chen, @berivanisik.bsky.social, Sanmi Koyejo, Albert No
🧡 16/16

27.11.2024 18:42 β€” πŸ‘ 2    πŸ” 1    πŸ’¬ 1    πŸ“Œ 0
Post image Post image

We tried generating images using different values of subsample size (m) and DP parameter Ξ΅. Our results were particularly good for Textual Inversion (TI)!

🧡 15/16

27.11.2024 18:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image Post image

We tested the effectiveness of our approach on two different target datasets: a collection of artworks from an artist (with consent, see her art on Instagram: @eveismyname) and the Paris 2024 Olympic pictograms (approved for non-commercial editorial use, ©️IOC - 2023)

🧡 14/16

27.11.2024 18:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

By only aggregating over a smaller sample of the target embeddings, we can enhance the strength of our DP guarantees. This allows us to achieve the same privacy guarantees with much less noise, and hence much better image quality! ✨

🧡13/16

27.11.2024 18:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

For a bigger privacy-utility boost, we can also introduce subsampling. [1]

[1] arxiv.org/abs/2210.00597
🧡 12/16

27.11.2024 18:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

4. Apply noisy aggregated embedding to Style Guidance or Textual Inversion πŸ”₯
5. Serve and enjoy! 🍴

For details, see our paper:
πŸ“„: arxiv.org/abs/2411.14639
🧡 11/16

27.11.2024 18:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Our recipe can be summarized as follows: 🍳

1. Obtain an embedding vector for each image in the target dataset 🌿
2. Aggregate the embeddings to limit sensitivity to individual image πŸ₯£
3. Add DP noise using the Gaussian mechanism πŸ§‚

🧡 10/16

27.11.2024 18:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

2. Textual Inversion [1] (use the target dataset to train a new token embedding vector that is later used in the text prompt during image generation)

[1] arxiv.org/abs/2208.01618
🧡 9/16

27.11.2024 18:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

1. Universal Guidance’s CLIP style guidance [1] (guide image towards target CLIP embedding during image generation)

[1] arxiv.org/abs/2302.07121
🧡 8/16

27.11.2024 18:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

But here, we propose a new approach using embedding vectors.

Our work focuses on applying DP to known diffusion model adaptation approaches that involve encoding the target dataset into an embedding vector, including:

🧡7/16

27.11.2024 18:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

We therefore turn to other DP approaches that don’t require full training using DP-SGD. Some work has been done on this, such as DP-LoRA [1] (utilizing Low-Rank Adaptation) and DP-RDM [2] (utilizing Retrieval Augmented Generation).

[1] arxiv.org/abs/2110.06500
[2] arxiv.org/abs/2403.14421
🧡 6/16

27.11.2024 18:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

But while DP-SGD is powerful, it struggles with:
1. High computational costs
2. Incompatibility with batch normalization
3. Severe degradation in image quality

🧡5/16

27.11.2024 18:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

The first solution that comes to mind is differential privacy (DP), which adds noise to provide data privacy. DP-SGD [1] is particularly popular for neural networks, and work has been done to adapt DP-SGD to diffusion models.

[1] arxiv.org/abs/1607.00133
🧡 4/16

27.11.2024 18:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

This means the model might directly recreate training images instead of generalizing patterns. This poses copyright concerns for artists and privacy issues for sensitive datasets.©️

🧡 3/16

27.11.2024 18:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Diffusion models like Stable Diffusion have revolutionized image generation and can be personalized on smaller datasets to capture specific objects or styles. But personalizing on small datasets risks memorization.

🧡 2/16

27.11.2024 18:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

How might we get a diffusion model to β€œlearn” an art style without copying specific artworks? 🎨

🧡Let’s find out! (1/16)
πŸ“„: arxiv.org/abs/2411.14639

27.11.2024 18:42 β€” πŸ‘ 2    πŸ” 1    πŸ’¬ 1    πŸ“Œ 1

@poonpura is following 11 prominent accounts