Joana Filipa Fernandes's Avatar

Joana Filipa Fernandes

@joanaff.bsky.social

PhD student Biology and Ecology of Global Changes ๐Ÿ‡ต๐Ÿ‡น๐Ÿ‡จ๐Ÿ‡ฆ๐ŸŒก ๐ŸŒŠ at โ€ช@uaveiro.bsky.socialโ€ฌ and โ€ช@uqar.bsky.socialโ€ฌ ๐Ÿฆ๐ŸŸ | @em-oyster.bsky.socialโ€ฌ ๐Ÿ‡ช๐Ÿ‡บ

154 Followers  |  371 Following  |  3 Posts  |  Joined: 04.01.2025  |  1.6584

Latest posts by joanaff.bsky.social on Bluesky

News - Science of The Total Environment | ScienceDirect.com by Elsevier Read the latest articles of Science of The Total Environment at ScienceDirect.com, Elsevierโ€™s leading platform of peer-reviewed scholarly literature

www.sciencedirect.com/journal/scie...

This is what they have in their website. Maybe it helps to clarify the situation!

29.11.2025 16:40 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Just a question: what actually this means for the papers already published there? Did they do not count anymore? And the citations? Thanks for sharing the news!!

27.11.2025 19:42 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
The effects of temperature on organismal performance are depicted using thermal performance curves, where performance is greatest at the optimal temperature and starts to decrease toward cooler or warmer temperatures, reflecting the thermal window (tolerable range of temperatures) of the species. Briefly, the Oxygen and Capacity Limited Thermal Tolerance hypothesis proposes that oxygen limitation explains the performance decline at high temperatures and sets the first boundary for thermal limits across ectotherms. This is due to a mismatch between the oxygen demand of the organism and the capacity of the cardiorespiratory system to supply oxygen to tissues when the organism is under warming. This concept is central to predict species responses to warming. As oxygen supersaturation in water has been shown to alleviate oxygen supply limitations by increasing maximum rates of oxygen transport in blood, Raby and colleagues (2025) tested the effects of oxygen supersaturation on thermal tolerance across 14 aquatic species. The authors found that it had negligible effects on upper thermal limits, challenging the oxygen limitation hypothesis as a universal mechanism underpinning thermal tolerance of aquatic ectotherms. The authors highlight that oxygen supersaturation in water, a naturally occurring phenomenon in shallow waters, may not protect aquatic species from the effects of extreme heat.

The effects of temperature on organismal performance are depicted using thermal performance curves, where performance is greatest at the optimal temperature and starts to decrease toward cooler or warmer temperatures, reflecting the thermal window (tolerable range of temperatures) of the species. Briefly, the Oxygen and Capacity Limited Thermal Tolerance hypothesis proposes that oxygen limitation explains the performance decline at high temperatures and sets the first boundary for thermal limits across ectotherms. This is due to a mismatch between the oxygen demand of the organism and the capacity of the cardiorespiratory system to supply oxygen to tissues when the organism is under warming. This concept is central to predict species responses to warming. As oxygen supersaturation in water has been shown to alleviate oxygen supply limitations by increasing maximum rates of oxygen transport in blood, Raby and colleagues (2025) tested the effects of oxygen supersaturation on thermal tolerance across 14 aquatic species. The authors found that it had negligible effects on upper thermal limits, challenging the oxygen limitation hypothesis as a universal mechanism underpinning thermal tolerance of aquatic ectotherms. The authors highlight that oxygen supersaturation in water, a naturally occurring phenomenon in shallow waters, may not protect aquatic species from the effects of extreme heat.

Oxygen limitation is considered a key mechanism of #ThermalTolerance. @dianasmadeira.bsky.social explores how a @plosbiology.org study challenges this idea, showing minimal protective effects of O2 supersaturation in heat-stressed #aquatic #ectotherms ๐Ÿงช Paper: plos.io/43hzMQa Primer: plos.io/3XeUtbS

06.11.2025 17:30 โ€” ๐Ÿ‘ 24    ๐Ÿ” 12    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 1
The effects of temperature on organismal performance are depicted using thermal performance curves, where performance is greatest at the optimal temperature and starts to decrease toward cooler or warmer temperatures, reflecting the thermal window (tolerable range of temperatures) of the species. Briefly, the Oxygen and Capacity Limited Thermal Tolerance hypothesis proposes that oxygen limitation explains the performance decline at high temperatures and sets the first boundary for thermal limits across ectotherms. This is due to a mismatch between the oxygen demand of the organism and the capacity of the cardiorespiratory system to supply oxygen to tissues when the organism is under warming. This concept is central to predict species responses to warming. As oxygen supersaturation in water has been shown to alleviate oxygen supply limitations by increasing maximum rates of oxygen transport in blood, Raby and colleagues (2025) tested the effects of oxygen supersaturation on thermal tolerance across 14 aquatic species. The authors found that it had negligible effects on upper thermal limits, challenging the oxygen limitation hypothesis as a universal mechanism underpinning thermal tolerance of aquatic ectotherms. The authors highlight that oxygen supersaturation in water, a naturally occurring phenomenon in shallow waters, may not protect aquatic species from the effects of extreme heat.

The effects of temperature on organismal performance are depicted using thermal performance curves, where performance is greatest at the optimal temperature and starts to decrease toward cooler or warmer temperatures, reflecting the thermal window (tolerable range of temperatures) of the species. Briefly, the Oxygen and Capacity Limited Thermal Tolerance hypothesis proposes that oxygen limitation explains the performance decline at high temperatures and sets the first boundary for thermal limits across ectotherms. This is due to a mismatch between the oxygen demand of the organism and the capacity of the cardiorespiratory system to supply oxygen to tissues when the organism is under warming. This concept is central to predict species responses to warming. As oxygen supersaturation in water has been shown to alleviate oxygen supply limitations by increasing maximum rates of oxygen transport in blood, Raby and colleagues (2025) tested the effects of oxygen supersaturation on thermal tolerance across 14 aquatic species. The authors found that it had negligible effects on upper thermal limits, challenging the oxygen limitation hypothesis as a universal mechanism underpinning thermal tolerance of aquatic ectotherms. The authors highlight that oxygen supersaturation in water, a naturally occurring phenomenon in shallow waters, may not protect aquatic species from the effects of extreme heat.

Oxygen limitation is considered a key mechanism of #ThermalTolerance. @dianasmadeira.bsky.social explores how a @plosbiology.org study challenges this idea, showing minimal protective effects of O2 supersaturation in heat-stressed #aquatic #ectotherms ๐Ÿงช Paper: plos.io/43hzMQa Primer: plos.io/3XeUtbS

06.11.2025 13:55 โ€” ๐Ÿ‘ 15    ๐Ÿ” 7    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

๐Ÿ“ฃ OYSTER EuroMarine โ€“ Call for New Members ๐Ÿ“ฃ
โŒ› Call is open! Deadline: 19 December 2025 โŒ›

More information here: euromarinenetwork.eu/news/oyster-...
@euromarine.bsky.social

#EuroMarine
#OYSTER
#EarlyCareerResearchers
#MarineScience
#ECRNetwork
#OceanCommunity

25.11.2025 09:05 โ€” ๐Ÿ‘ 4    ๐Ÿ” 4    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Guidelines for ensuring meaningful engagement of early career researchers in scientific collaborations: recommendations from and for marine and polar scientists Abstract. There is an increasing recognition of the importance of involving early career researchers (ECRs) in scientific positions of trust within nationa

Guidelines for ensuring meaningful engagement of early career researchers in scientific collaborations: recommendations from and for marine and polar scientists ๐ŸŒŠ

Many thanks to @laurakaikkonen.bsky.social and team for your efforts! ๐Ÿ‘ฅ
academic.oup.com/icesjms/arti... @uaveiro.bsky.social #marine

19.08.2025 15:38 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Guidelines for ensuring meaningful engagement of early career researchers in scientific collaborations: recommendations from and for marine and polar scientists Abstract. There is an increasing recognition of the importance of involving early career researchers (ECRs) in scientific positions of trust within nationa

Guidelines for ensuring meaningful engagement of early career researchers in scientific collaborations: recommendations from and for marine and polar scientists url: academic.oup.com/icesjms/arti...

19.08.2025 08:57 โ€” ๐Ÿ‘ 8    ๐Ÿ” 6    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image

๐Ÿ“ข Are you a #marine #ECR?
Join us in the Pre-Event of EMBS in Bodรธ! Details๐Ÿ‘‡

๐Ÿ“… Date: 5th July 2025
๐Ÿ•˜ Time: 11AM to 7PM CET
๐Ÿ“Location: Room: Oscar sund 2, building: Noatun
Universitetsallรฉen 11, 8026 Bodรธ, Norway
๐ŸŽŸ๏ธ Registration: lnkd.in/eERnK686
Please register before the 2nd of July!

27.06.2025 09:56 โ€” ๐Ÿ‘ 2    ๐Ÿ” 3    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 1
Post image

New #paper, in collaboration with UQAR, showsย that the Northern #shrimp displays striking location-specific #phospholipidome responses to warming & acidification across the Northwest #Atlantic

@pierocalosi.bsky.social
@joanaff.bsky.social

doi.org/10.1016/j.en...

21.06.2025 17:15 โ€” ๐Ÿ‘ 2    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

๐Ÿ“ข Are you an Early Career in Marine Science? Share your experience! ๐ŸŒŠ
Take our ECS network contribution survey ๐Ÿ‘‡
www.surveymonkey.com/r/ECNetworks

#MarineScience #ECR #OYSTER #EuroMarine

10.06.2025 08:30 โ€” ๐Ÿ‘ 2    ๐Ÿ” 3    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 3
Post image

๐Ÿšจ THREAD ALERT ๐Ÿšจ

๐Ÿ“ข Are you ready for our weekly #job thread ๐ŸŒŠโ‰๏ธ

We come with several #PhD #PostDoc and other #JobOpportunities for #EarlyCareer marine scientist ๐Ÿคฟ๐Ÿ‘ฉโ€๐Ÿ”ฌ๐Ÿ‘จโ€๐Ÿ’ป

If you know of any other opportunities, comment below ๐Ÿ‘‡ or DM us ๐Ÿ’ฌ

08.04.2025 09:33 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

We're excited to welcome you to our BlueSky community! #OYSTER (Orienting Young Scientists of EuroMarine) is a network by and for Early Career Researchers (ECRs) in marine science aimed to support each other, share opportunities, and work for a more inclusive and empowering future ocean research ๐ŸŒŠ

31.03.2025 15:20 โ€” ๐Ÿ‘ 5    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 1
Preview
How institutions can better support international early-career researchers - Nature Human Behaviour Nature Human Behaviour - How institutions can better support international early-career researchers

This Correspondence proposes a guideline for academic institutions to better support international Early Career Researchers (ECRs) adapting to a new environment. @m-lopezacosta.bsky.social @odeigg.bsky.social @cgalobart.bsky.social www.nature.com/articles/s41...

24.02.2025 18:14 โ€” ๐Ÿ‘ 13    ๐Ÿ” 9    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 1

@joanaff is following 20 prominent accounts