Leonie Weissweiler's Avatar

Leonie Weissweiler

@weissweiler.bsky.social

Postdoc at Uppsala University Computational Linguistics with Joakim Nivre PhD from LMU Munich, prev. UT Austin, Princeton, @ltiatcmu.bsky.social, Cambridge computational linguistics, construction grammar, morphosyntax leonieweissweiler.github.io

753 Followers  |  216 Following  |  59 Posts  |  Joined: 19.11.2024  |  2.1093

Latest posts by weissweiler.bsky.social on Bluesky

Video thumbnail

Meet @weissweiler.bsky.social, Postdoc at Uppsala Uni πŸ‡ΈπŸ‡ͺ and ELLIS Member, working on #NLProc, computational linguistics & LM interpretability.

She’s accepted an Assistant Prof position at Leipzig Uni πŸ‡©πŸ‡ͺβ€”the first female CompSci professor thereβ€”and is eager to support more women πŸ‘

#WomenInELLIS

21.01.2026 10:08 β€” πŸ‘ 17    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0

Yay congratulations! πŸ₯³πŸŽ“

12.01.2026 23:01 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 1
Post image

πŸ§‘β€πŸ”¬I’m recruiting PhD students in Natural Language Processing @unileipzig.bsky.social Computer Science, together with @scadsai.bsky.social!

Topics include, but aren’t limited to:

πŸ”ŽLinguistic Interpretability
🌍Multilingual Evaluation
πŸ“–Computational Typology

Please share!

#NLProc #NLP

11.12.2025 13:36 β€” πŸ‘ 41    πŸ” 25    πŸ’¬ 1    πŸ“Œ 3
Two fully funded PhD positions in Natural Language Processing at University of Leipzig | European Laboratory for Learning and Intelligent Systems

🏹 Job alert: Two fully funded PhD positions in Natural Language Processing at University of Leipzig

πŸ“ Leipzig πŸ‡©πŸ‡ͺ
πŸ“… Apply by Jan 15th
πŸ”— https://ellis.eu/research/jobs/2025-12-16-two-fully-funded-phd-positions-in-natural-language-processing

18.12.2025 07:05 β€” πŸ‘ 10    πŸ” 8    πŸ’¬ 0    πŸ“Œ 0

@weissweiler.bsky.social is setting up her own group at @unileipzig.bsky.social and @scadsai.bsky.social as Assistant Professor for #NaturalLanguageProcessing and is advertising two open PhD positions. πŸ₯³

πŸ‘‰ Full announcement: leonieweissweiler.github.io/phd_leipzig....

17.12.2025 14:23 β€” πŸ‘ 8    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0

Thank you!

12.12.2025 06:43 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Thank you!

11.12.2025 20:58 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

aww thanks for the vote of confidence!

11.12.2025 15:58 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

πŸ”—Find more information and apply here: leonieweissweiler.github.io/phd_leipzig....

11.12.2025 13:36 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

πŸ§‘β€πŸ”¬I’m recruiting PhD students in Natural Language Processing @unileipzig.bsky.social Computer Science, together with @scadsai.bsky.social!

Topics include, but aren’t limited to:

πŸ”ŽLinguistic Interpretability
🌍Multilingual Evaluation
πŸ“–Computational Typology

Please share!

#NLProc #NLP

11.12.2025 13:36 β€” πŸ‘ 41    πŸ” 25    πŸ’¬ 1    πŸ“Œ 3

Thank you!

10.12.2025 23:04 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Thanks, Kyle!

10.12.2025 21:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Thank you! πŸ₯³

10.12.2025 21:38 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Thank you!!

10.12.2025 21:15 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Thank you! πŸ€—

10.12.2025 21:14 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Thanks! Spoiler warning πŸ˜‰πŸ¦

10.12.2025 21:14 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Thank you! πŸ™‚

10.12.2025 21:13 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

πŸ₯³Life Update!

I’m thrilled to share that I’ll be starting as assistant professor for Natural Language Processing @unileipzig.bsky.social in April! I’m deeply grateful to everyone who supported me on this journey.

I will be recruiting PhD students with @scadsai.bsky.social, stay tuned for details!

10.12.2025 13:09 β€” πŸ‘ 47    πŸ” 5    πŸ’¬ 9    πŸ“Œ 1
Post image

Oops, here are the three caused-motion examples that were meant to go in the first post:

19.11.2025 18:20 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
View of Hybrid Human-LLM Corpus Construction and LLM Evaluation for the Caused-Motion Construction

πŸ‘₯Joint work with Abdullatif KΓΆksal and Hinrich SchΓΌtze

πŸ“°Check out the paper: nejlt.ep.liu.se/article/view...

πŸ’»The full dataset and code are available on GitHub: github.com/LeonieWeissw...

🧡7/7

19.11.2025 13:56 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

We find that a range of models indeed struggle with this, but Gemma 27B solves it almost perfectly!

In grey are cases where the model struggles to answer both questions, in red the cases where it would have needed to reply on the caused-motion semantics.

🧡6/7

19.11.2025 13:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

Once we have manually annotated the final dataset in this way, we return to the original question and test if LLMs find the third question below easier than the second, which would indicate difficulties in making use of the semantics of the caused-motion construction.

🧡5/7

19.11.2025 13:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Designing the right prompt is tricky and depends on annotation cost.

For example, giving examples and asking for a json with the sentences and labels is always a good idea, but using o1 over 4o-mini is only worth it if human annotation costs more than .5$ per sentence!

🧡4/7

19.11.2025 13:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

But this leaves many FPs, and filtering them by hand would be expensive.

To reduce this cost, we use few-shot prompt-based filtering, which greatly reduces the number of FPs that our human annotator will have to sift through, and therefore the annotation cost.

🧡3/7

19.11.2025 13:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

They are all instances of the so-called caused-motion construction, and collecting enough instances for testing was a challenge, given its rarity!

To construct our dataset, we first create a dependency filter based on the syntactic side of the construction.

🧡2/7

19.11.2025 13:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸ“’Out now in NEJLT!πŸ“’

In each of these sentences, a verb that doesn't usually encode motion is being used to convey that an object is moving to a destination.

Given that these usages are rare, complex, and creative, we ask:

Do LLMs understand what's going on in them?

🧡1/7

19.11.2025 13:56 β€” πŸ‘ 15    πŸ” 3    πŸ’¬ 2    πŸ“Œ 0

Oh cool! Excited this LM + construction paper was SAC-Highlighted! Check it out to see how LM-derived measures of statistical affinity separate out constructions with similar words like "I was so happy I saw you" vs "It was so big it fell over".

10.11.2025 16:27 β€” πŸ‘ 17    πŸ” 4    πŸ’¬ 0    πŸ“Œ 0

I can confirm that I was indeed the 2nd author!

10.11.2025 20:12 β€” πŸ‘ 7    πŸ” 1    πŸ’¬ 1    πŸ“Œ 0

There's many directions where this could go, multilingual, low-resource language, interpretability, depending on your profile, and the internship may lead to a PhD, provided we get funding!

06.11.2025 09:07 β€” πŸ‘ 1    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0
Preview
Unlike β€œLikely”, β€œUnlike” is Unlikely: BPE-based Segmentation hurts Morphological Derivations in LLMs Paul Lerner, FranΓ§ois Yvon. Proceedings of the 31st International Conference on Computational Linguistics. 2025.

As we found in aclanthology.org/2025.coling-... that BPE-based LLMs (i.e. pretty much all LLMs) did not handle prefixations well

06.11.2025 09:06 β€” πŸ‘ 1    πŸ” 1    πŸ’¬ 1    πŸ“Œ 0

@weissweiler is following 20 prominent accounts