Sebastian Sanokowski's Avatar

Sebastian Sanokowski

@sanokows.bsky.social

Ellis PhD Student at JKU Linz working on Diffusion Samplers and combinatorial optimization

1,564 Followers  |  466 Following  |  18 Posts  |  Joined: 16.11.2024  |  1.7188

Latest posts by sanokows.bsky.social on Bluesky

Post image

Happy to introduce ๐Ÿ”ฅLaM-SLidE๐Ÿ”ฅ!

We show how trajectories of spatial dynamical systems can be modeled in latent space by

--> leveraging IDENTIFIERS.

๐Ÿ“šPaper: arxiv.org/abs/2502.12128
๐Ÿ’ปCode: github.com/ml-jku/LaM-S...
๐Ÿ“Blog: ml-jku.github.io/LaM-SLidE/
1/n

22.05.2025 12:24 โ€” ๐Ÿ‘ 7    ๐Ÿ” 8    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1
Post image

11/11 This is joint work with @willberghammer, @haoyu_wang66, @EnnemoserMartin, @HochreiterSepp, and @sebaleh. See you at #ICLR!
[Poster Link](iclr.cc/virtual/202...)
[Paper Link](arxiv.org/abs/2502.08696)
---

24.04.2025 08:57 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

10/11 ๐Ÿ† Our method outperforms autoregressive approaches on Ising model benchmarks and opens new avenues for applying diffusion models to a wide range of scientific applications in discrete domains.

24.04.2025 08:57 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

9/11 ๐Ÿ“Š Due to the mass-covering property of the fKL, it excels at unbiased sampling. Conversely, the rKL is mode-seeking, making it ideal for combinatorial optimization (CO) as it achieves better solution quality with fewer samples.

24.04.2025 08:57 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

8/11 ๐Ÿ’ก ๐’๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง 2: We address the limitations of the fKL by combining it with Neural Importance Sampling over samples from the diffusion sampler. This allows us to estimate the gradient of the fKL using Monte Carlo integration, making training more memory-efficient.

24.04.2025 08:57 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

7/11 An alternative is the forward KL divergence (fKL), where it is well known how to increase memory efficiency by leveraging Monte Carlo integration over diffusion time steps. However, the fKL divergence requires samples from the target distribution!

24.04.2025 08:57 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

6/11 ๐Ÿ’ก ๐’๐จ๐ฅ๐ฎ๐ญ๐ข๐จ๐ง 1: We apply the policy gradient theorem to the rKL between joint distributions of the diffusion path. This enables the use of mini-batches over diffusion time steps by leveraging reinforcement learning methods, allowing for memory-efficient training.

24.04.2025 08:57 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

5/11 A commonly used divergence is the reverse KL divergence (rKL), as the expectation of the divergence goes over samples from the generative model. However, naive optimization of this KL divergence requires backpropagating through the whole generative process.

24.04.2025 08:57 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

4/11 ๐Ÿšจ ๐‚๐ก๐š๐ฅ๐ฅ๐ž๐ง๐ ๐ž: However, existing diffusion samplers struggle with memory scaling, limiting the number of attainable diffusion steps due to backpropagation through the entire generative process.

24.04.2025 08:57 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

3/11 ๐Ÿ” ๐ƒ๐ข๐Ÿ๐Ÿ๐ฎ๐ฌ๐ข๐จ๐ง ๐’๐š๐ฆ๐ฉ๐ฅ๐ž๐ซ๐ฌ aim to sample from an unnormalized target distribution without access to samples from this distribution. They can be trained by minimizing a divergence between the joint distribution of the forward and reverse diffusion paths.

24.04.2025 08:57 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

2/11 We've developed scalable and memory-efficient training methods for diffusion samplers, achieving state-of-the-art results in combinatorial optimization and unbiased sampling on the Ising model.

24.04.2025 08:57 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

1/11 Excited to present our latest work "Scalable Discrete Diffusion Samplers: Combinatorial Optimization and Statistical Physics" at #ICLR2025 on Fri 25 Apr at 10 am!
#CombinatorialOptimization #StatisticalPhysics #DiffusionModels

24.04.2025 08:57 โ€” ๐Ÿ‘ 16    ๐Ÿ” 7    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Hochschulen und Forschungsinstitutionen verlassen Plattform X - Gemeinsam fรผr Vielfalt, Freiheit und Wissenschaft

Starkes Signal!!

รœber 60 dt. Hochschulen & Forschungsinstitutionen haben heute ihren Ausstieg bei X bekanntgegeben, s.u. #eXit

X sei nicht mehr vereinbar mit ihren Grundwerten: โ€žWeltoffenheit, wissenschaftliche Integritรคt, Transparenz und demokratischer Diskurs.โ€œ

Liste der Beteiligten hier:

10.01.2025 09:21 โ€” ๐Ÿ‘ 3398    ๐Ÿ” 832    ๐Ÿ’ฌ 90    ๐Ÿ“Œ 113
ML for molecules and materials in the era of LLMs [ML4Molecules] ELLIS workshop, HYBRID, December 6, 2024

The Machine Learning for Molecules workshop 2024 will take place THIS FRIDAY, December 6.

Tickets for in-person participation are "SOLD" OUT.

We still have a few free tickets for online/virtual participation!

Registration link here: moleculediscovery.github.io/workshop2024/

03.12.2024 12:35 โ€” ๐Ÿ‘ 19    ๐Ÿ” 14    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

A Pizza Steel or Pizza Stone with max Heat (250 celsius) should do the Job

30.11.2024 08:57 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

I think it is fine to keep the score, but if all concerns are addressed they should at least justify why they are nevertheless keeping their score.

26.11.2024 13:11 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Does this mean all Paper at 6 or above should be accepted?

25.11.2024 19:02 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

โœ๏ธ Reminder to reviewers: Check author responses to your reviews, and ask follow up questions if needed.

50% of papers have discussion - letโ€™s bring this number up!

25.11.2024 12:45 โ€” ๐Ÿ‘ 38    ๐Ÿ” 8    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 3

That is a cool idea!

23.11.2024 15:54 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

The โœจML Internship Feedโœจ is here!

@serge.belongie.com and I created this feed to compile internship opportunities in AI, ML, CV, NLP, and related areas.

The feed is rule-based. Please help us improve the rules by sharing feedback ๐Ÿงก

๐Ÿ”— Link to the feed: bsky.app/profile/did:...

22.11.2024 21:46 โ€” ๐Ÿ‘ 63    ๐Ÿ” 16    ๐Ÿ’ฌ 7    ๐Ÿ“Œ 1
Atlas - Engagement-Based Social Graph for Bluesky by Jaz (jaz.bsky.social)

Love seeing the Bluesky community grow!
Just look at the statsโ€”daily activity (likes, posts, and follows) is skyrocketing ๐Ÿ“ˆ, with recent peaks such as hitting 3 million daily likes!

Want to explore more about Blueskyโ€™s incredible growth? Check out the live stats page here: bsky.jazco.dev/stats

19.11.2024 20:02 โ€” ๐Ÿ‘ 5    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Max Welling (@wellingmax.bsky.social) landed and needs followers! ;)

18.11.2024 08:10 โ€” ๐Ÿ‘ 32    ๐Ÿ” 4    ๐Ÿ’ฌ 3    ๐Ÿ“Œ 0

โœ‹

17.11.2024 20:49 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

I also would like to join :)

16.11.2024 15:42 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

I'm making a list of AI for Science researchers on bluesky โ€” let me know if I missed you / if you'd like to join!

go.bsky.app/AcP9Lix

10.11.2024 00:11 โ€” ๐Ÿ‘ 246    ๐Ÿ” 90    ๐Ÿ’ฌ 160    ๐Ÿ“Œ 5

@sanokows is following 20 prominent accounts