Frank Fundel's Avatar

Frank Fundel

@frankfundel.bsky.social

PhD Student @ LMU Munich https://ffundel.de/

17 Followers  |  8 Following  |  11 Posts  |  Joined: 29.11.2024  |  1.7962

Latest posts by frankfundel.bsky.social on Bluesky

Preview
CleanDIFT: Diffusion Features without Noise CleanDIFT enables extracting Noise-Free, Timestep-Independent Diffusion Features

🧹 CleanDiFT: Diffusion Features without Noise
@rmsnorm.bsky.social*, @stefanabaumann.bsky.social*, @koljabauer.bsky.social*, @frankfundel.bsky.social, BjΓΆrn Ommer
Oral Session 1C (Davidson Ballroom): Friday 9:00
Poster Session 1 (ExHall D): Friday 10:30-12:30, # 218
compvis.github.io/cleandift/

09.06.2025 07:58 β€” πŸ‘ 8    πŸ” 3    πŸ’¬ 1    πŸ“Œ 0

Our paper is accepted at WACV 2025! πŸ€—
Check out DistillDIFT. Code & weights are now public:
πŸ‘‰ github.com/compvis/dist...

06.12.2024 14:35 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

πŸ”₯ We achieve SOTA in unsupervised & weakly-supervised semantic correspondence at just a fraction of the computational cost.

06.12.2024 14:35 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

✨ By training just a tiny LoRA adapter, we transfer the power of a large diffusion model (SDXL Turbo) into a small ViT (DINOv2).

πŸ”„ All done unsupervised by retrieving pairs of similar images.

06.12.2024 14:35 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

πŸš€ Meet DistillDIFT:
It distills the power of two vision foundation models into one streamlined model, achieving SOTA performance at a fraction of the computational cost.

No need for bulky generative combosβ€”just pure efficiency. πŸ’‘

06.12.2024 14:35 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

This work was co-lead by: @joh-schb.bsky.social @vtaohu.bsky.social

πŸ“·Project Page: compvis.github.io/distilldift
πŸ’»Code: github.com/compvis/dist...
πŸ“ Paper: arxiv.org/abs/2412.03512

πŸ‘‡

06.12.2024 14:35 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Did you know you can distill the capabilities of a large diffusion model into a small ViT? βš—οΈ
We showed exactly that for a fundamental task:
semantic correspondenceπŸ“

A thread πŸ§΅πŸ‘‡

06.12.2024 14:35 β€” πŸ‘ 4    πŸ” 2    πŸ’¬ 1    πŸ“Œ 2

Our paper is accepted at WACV 2025! πŸ€—
Check out DistillDIFT. Code & weights are now public:
πŸ‘‰ github.com/compvis/dist...

06.12.2024 12:23 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

πŸ”₯ We achieve SOTA in unsupervised & weakly-supervised semantic correspondence at just a fraction of the computational cost.

06.12.2024 12:23 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

✨ By training just a tiny LoRA adapter, we transfer the power of a large diffusion model (SDXL Turbo) into a small ViT (DINOv2).

πŸ”„ All done unsupervised by retrieving pairs of similar images.

06.12.2024 12:23 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

πŸš€ Meet DistillDIFT:
It distills the power of two vision foundation models into one streamlined model, achieving SOTA performance at a fraction of the computational cost.

No need for bulky generative combosβ€”just pure efficiency. πŸ’‘

06.12.2024 12:23 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

πŸ“·Project Page: compvis.github.io/distilldift
πŸ’»Code: github.com/compvis/dist...
πŸ“ Paper: arxiv.org/abs/2412.03512

πŸ‘‡

06.12.2024 12:23 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

@frankfundel is following 8 prominent accounts