Vaidehi Patil's Avatar

Vaidehi Patil

@vaidehipatil.bsky.social

Ph.D. Student at UNC NLP | Prev: Apple, Amazon, Adobe (Intern) vaidehi99.github.io | Undergrad @IITBombay

867 Followers  |  152 Following  |  27 Posts  |  Joined: 18.11.2024  |  1.733

Latest posts by vaidehipatil.bsky.social on Bluesky

MUGen @ ICML 2025 - Workshop on Machine Unlearning for Generative AI

In any case, the work is featuring at an interesting-looking workshop this weekend, put on by @katherinelee.bsky.social, @vaidehipatil.bsky.social, and others. More info here: mugenworkshop.github.io

15.07.2025 13:27 β€” πŸ‘ 2    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0
UT Austin campus

UT Austin campus

Extremely excited to announce that I will be joining
@utaustin.bsky.social Computer Science in August 2025 as an Assistant Professor! πŸŽ‰

05.05.2025 20:28 β€” πŸ‘ 43    πŸ” 9    πŸ’¬ 5    πŸ“Œ 2

Thanks to my amazing collaborators Yi-Lin Sung , @peterbhase.bsky.social , Jie Peng, Tianlong Chen , @mohitbansal.bsky.social for a wonderful collaboration!

07.05.2025 18:54 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Preview
Unlearning Sensitive Information in Multimodal LLMs: Benchmark and Attack-Defense Evaluation LLMs trained on massive datasets may inadvertently acquire sensitive information such as personal details and potentially harmful content. This risk is further heightened in multimodal LLMs as they in...

πŸ“Ž Check it out here!
πŸ“„ Paper: arxiv.org/abs/2505.01456
πŸ’» Code and Dataset: github.com/Vaidehi99/Un...
huggingface.co/datasets/vai...
πŸ€— HuggingFace: huggingface.co/papers/2505....

07.05.2025 18:54 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image Post image

Key Findings
πŸ”₯ Multimodal attacks are the most effective
πŸ›‘οΈ Our strongest defense is deleting info from hidden states
πŸ“‰ Larger models are more robust to extraction attacks post-editing compared to smaller ones
🎯 UnLOK-VQA enables targeted evaluations of unlearning defenses

07.05.2025 18:54 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

βš”οΈ Benchmarking Multimodal Unlearning Defenses
Multimodal data opens up new attack vectors.
We benchmark 6 unlearning defenses against 7 attack strategies, including:
βœ…White-box attacks
βœ…Black-box paraphrased multimodal prompts

07.05.2025 18:54 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

This enables two key types of evaluation:
βœ…Generalization Evaluation
βœ”οΈRephrased questions
βœ”οΈRephrased images

βœ…Specificity Evaluation
βœ”οΈNeighboring questions (same image, new question)
βœ”οΈNeighboring images (same concept, different image)

07.05.2025 18:54 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image Post image

πŸ“¦ What Is UnLOK-VQA?
UnLOK-VQA focuses on unlearning pretrained knowledge and builds on OK-VQA, a visual QA dataset. We extend it w/ an automated question-answer generation and image generation pipeline:
βœ…Forget samples from OK-VQA
βœ…New samples at varying levels of proximity (easy, medium, hard)

07.05.2025 18:54 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

This is essential for:
πŸ“œ Legal compliance (e.g., GDPR, CCPA, the right to be forgotten)
πŸ” Multimodal Privacy (e.g., faces, locations, license plates)
πŸ“· Trust in real-world image-grounded systems

07.05.2025 18:54 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸ” Why Does Multimodal Unlearning Matter?
Existing unlearning benchmarks focus only on text.
But multimodal LLMs are trained on web-scale dataβ€”images + captionsβ€”making them highly vulnerable to leakage of sensitive or unwanted content.
Unlearning must hold across modalities, not just in language.

07.05.2025 18:54 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

We study:
❓ How effectively can we erase multimodal knowledge?
❓ How should we measure forgetting in multimodal settings?
βœ…We benchmark 6 unlearning defenses against 7 whitebox and blackbox attack strategies

07.05.2025 18:54 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

🚨 Introducing our @tmlrorg.bsky.social paper β€œUnlearning Sensitive Information in Multimodal LLMs: Benchmark and Attack-Defense Evaluation”
We present UnLOK-VQA, a benchmark to evaluate unlearning in vision-and-language models, where both images and text may encode sensitive or private information.

07.05.2025 18:54 β€” πŸ‘ 10    πŸ” 8    πŸ’¬ 1    πŸ“Œ 0
Post image

In Singapore for #ICLR2025 this week to present papers + keynotes πŸ‘‡, and looking forward to seeing everyone -- happy to chat about research, or faculty+postdoc+phd positions, or simply hanging out (feel free to ping)! πŸ™‚

Also meet our awesome students/postdocs/collaborators presenting their work.

21.04.2025 16:49 β€” πŸ‘ 19    πŸ” 4    πŸ’¬ 1    πŸ“Œ 1

Come chat about unlearning with us!!

02.04.2025 16:57 β€” πŸ‘ 5    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0
Preview
MUGen @ ICML '25 - PC Expression of Interest We are currently recruiting reviewers for the Program Committee of MUGen (Machine Unlearning for Generative AI) @ ICML '25. If you are interested in participating, please fill out this form. We antici...

Call for PC Members!
We’re looking for program committee members!
πŸ“ Submit your Expression of Interest here: forms.gle/ZPEHeymJ4t5N...
#ICML2025

02.04.2025 15:59 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

πŸ‘©β€πŸ’» Organizers:
Mantas Mazeika, Yang Liu, @katherinelee.bsky.social, @mohitbansal.bsky.social, Bo Li and myself (@vaidehipatil.bsky.social) πŸ™‚

02.04.2025 15:59 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

πŸ”₯ Speakers & Panelists:
We're lucky to have an incredible lineup of speakers and panelists covering diverse topics in our workshop:
Nicholas Carlini, Ling Liu, Shagufta Mehnaz, @peterbhase.bsky.social , Eleni Triantafillou, Sijia Liu, @afedercooper.bsky.social, Amy Cyphert

02.04.2025 15:59 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
MUGen @ ICML 2025 - Workshop on Machine Unlearning for Generative AI

We invite contributions exploring key challenges and advancements at the intersection of machine unlearning and generative AI!

πŸ”— Full details & updates: mugenworkshop.github.io

πŸ“… Key Dates:
πŸ“ Submission Deadline: May 19
βœ… Acceptance Notifications: June 9
🀝 Workshop Date: July 18 or 19

02.04.2025 15:59 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

🚨Exciting @icmlconf.bsky.social workshop alert 🚨

We’re thrilled to announce the #ICML2025 Workshop on Machine Unlearning for Generative AI (MUGen)!

⚑Join us in Vancouver this July to dive into cutting-edge research on unlearning in generative AI with top speakers and panelists! ⚑

02.04.2025 15:59 β€” πŸ‘ 4    πŸ” 1    πŸ’¬ 1    πŸ“Œ 1
Post image

πŸ₯³πŸ₯³ Honored and grateful to be awarded the 2025 Apple Scholars in AI/ML PhD Fellowship! ✨

Huge shoutout to my advisor @mohitbansal.bsky.social, & many thanks to my lab mates @unccs.bsky.social , past collaborators + internship advisors for their support β˜ΊοΈπŸ™

machinelearning.apple.com/updates/appl...

27.03.2025 19:25 β€” πŸ‘ 14    πŸ” 3    πŸ’¬ 1    πŸ“Œ 3

🚨UPCORE is our new method for balancing unlearning/forgetting with maintaining model performance.

Best part is it works by selecting a coreset from the data rather than changing the model, so it is compatible with any unlearning method, with consistent gains for 3 methods + 2 tasks!

25.02.2025 02:33 β€” πŸ‘ 4    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0
Preview
UPCORE: Utility-Preserving Coreset Selection for Balanced Unlearning User specifications or legal frameworks often require information to be removed from pretrained models, including large language models (LLMs). This requires deleting or "forgetting" a set of data poi...

Huge thanks to my co-authors
@esteng.bsky.social , and @mohitbansal.bsky.social for a great collaboration!

πŸš€ Check it out here:
πŸ“„ Paper: arxiv.org/abs/2502.15082
πŸ’» Code: github.com/Vaidehi99/UP...
πŸ€— @huggingface page: huggingface.co/papers/2502....

25.02.2025 02:23 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image Post image

UPCORE consistently outperforms baselines across all methods:

βœ”οΈ Less unintended degradation
βœ”οΈ Deletion transferred to pruned points

UPCORE provides a practical, method-agnostic approach that improves the reliability of unlearning techniques.

25.02.2025 02:23 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

Instead of evaluating at a single training checkpoint, we introduce AUC (Area Under the Curve) across deletion effectiveness and utility.

This provides a complete picture of the trade-off between forgetting and knowledge retention over the unlearning trajectory.

25.02.2025 02:23 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

We apply UPCORE across three unlearning methods:
πŸ“‰ Gradient Ascent
🚫 Refusal
πŸ”„ Negative Preference Optimization (NPO)

We measure:
βœ”οΈ Deletion effectiveness – How well the target is removed
βœ”οΈ Unintended degradation – Impact on other abilities
βœ”οΈ Positive transfer – How well unlearning generalizes

25.02.2025 02:23 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

Even after pruning, the pruned points in the forget set still become unlearned -- thanks to positive collateral transfer from the core forget set.

Thus, UPCORE reduces negative collateral effects while maintaining effective deletion.

25.02.2025 02:23 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

UPCORE constructs a core forget set by identifying and removing outlier points using Isolation Forest.

βœ… Minimizes unintended degradation
βœ… Preserves model utility
βœ… Compatible with multiple unlearning methods

25.02.2025 02:23 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Our key insight: Not all forget set points degrade the model equally.

Points contributing to high variance cause more collateral damage when unlearned.

By pruning these outliers, UPCORE reduces unintended forgetting while ensuring effective deletion.

25.02.2025 02:23 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

LLMs train on vast datasets, often with sensitive or unwanted info. Regulations like GDPR, CCPA mandate removal.

Yet, standard unlearning can degrade unrelated knowledge, making it unreliable.

Effective unlearning is key for:
πŸ“œ Compliance (GDPR, CCPA)
πŸ” Privacy & security
βš–οΈ Ethical AI development

25.02.2025 02:23 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

🚨 Introducing UPCORE, to balance deleting info from LLMs with keeping their other capabilities intact.

UPCORE selects a coreset of forget data, leading to a better trade-off across 2 datasets and 3 unlearning methods.

πŸ§΅πŸ‘‡

25.02.2025 02:23 β€” πŸ‘ 12    πŸ” 5    πŸ’¬ 2    πŸ“Œ 1

@vaidehipatil is following 20 prominent accounts