Mathias Niepert's Avatar

Mathias Niepert

@mniepert.bsky.social

Professor @ University of Stuttgart, Scientific Advisor @ NEC Labs, GraphML, geometric deep learning, ML for Science and Simulations. Formerly @IUBloomington and @uwcse

1,275 Followers  |  364 Following  |  11 Posts  |  Joined: 17.11.2024  |  1.8423

Latest posts by mniepert.bsky.social on Bluesky

Post image

Almost 5 years in the making... "Hyperparameter Optimization in Machine Learning" is finally out! ๐Ÿ“˜

We designed this monograph to be self-contained, covering: Grid, Random & Quasi-random search, Bayesian & Multi-fidelity optimization, Gradient-based methods, Meta-learning.

arxiv.org/abs/2410.22854

17.12.2025 09:54 โ€” ๐Ÿ‘ 13    ๐Ÿ” 8    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

๐Ÿšจ New preprint: How well do universal ML potentials perform in biomolecular simulations under realistic conditions?

There's growing excitement around ML potentials trained on large datasets.
But do they deliver in simulations of biomolecular systems?

Itโ€™s not so clear. ๐Ÿงต

1/

15.08.2025 08:29 โ€” ๐Ÿ‘ 5    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Demokratische Kontrolle von KI und Abschรคtzung von Nutzen und Gefahren ist extrem wichtig. Eine Politisierung von Technologien und eine damit verbundene Technologiefeindlichkeit ist eine extrem schlechte Idee.

29.05.2025 07:27 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Statt steiler Thesen รผber โ€žfaschistoide KIโ€œ und Eugenik braucht es empirische Forschung: Was denken KI-Forschende und Unternehmen wirklich? Wie lรคsst sich Missbrauch wirksam begrenzen? Einzelmeinungen wie die von Musk zum Mainstream zu erklรคren, schafft nur ideologische Zerrbilder.

29.05.2025 07:09 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Anji is an amazing mentor and colleague. If I could go for another PhD in CS I would apply!

17.05.2025 17:31 โ€” ๐Ÿ‘ 8    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

๐ŸšจICLR poster in 1.5 hours, presented by @danielmusekamp.bsky.social :
Can active learning help to generate better datasets for neural PDE solvers?
We introduce a new benchmark to find out!
Featuring 6 PDEs, 6 AL methods, 3 architectures and many ablations - transferability, speed, etc.!

24.04.2025 00:38 โ€” ๐Ÿ‘ 11    ๐Ÿ” 2    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
LOGLO-FNO: Efficient Learning of Local and Global Features in... Learning local features and high frequencies is an important problem in Scientific Machine Learning. For instance, effectively modeling turbulence (e.g., $Re=3500$ and above) depends on accurately...

Authors: Marimuthu Kalimuthu, @dholzmueller.bsky.social, @mniepert.bsky.social
Full text: openreview.net/forum?id=OCM...

18.03.2025 08:13 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

The slides for my lectures on (Bayesian) Active Learning, Information Theory, and Uncertainty are online now ๐Ÿฅณ They cover quite a bit from basic information theory to some recent papers:

blackhc.github.io/balitu/

and I'll try to add proper course notes over time ๐Ÿค—

17.12.2024 06:50 โ€” ๐Ÿ‘ 177    ๐Ÿ” 28    ๐Ÿ’ฌ 3    ๐Ÿ“Œ 0
Post image

[9/n] Beyond Image Generation
LD3 can be applied to diffusion models in other domains, such as molecular docking.

13.02.2025 08:30 โ€” ๐Ÿ‘ 0    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Want to turn your state-of-the-art diffusion models into ultra-fast few-step generators? ๐Ÿš€
Learn how to optimize your time discretization strategyโ€”in just ~10 minutes! โณโœจ
Check out how it's done in our Oral paper at ICLR 2025 ๐Ÿ‘‡

13.02.2025 08:44 โ€” ๐Ÿ‘ 15    ๐Ÿ” 4    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Home - ComBayNS 2025 Workshop @ IJCNN 2025

Welcome to our Bluesky account! ๐Ÿฆ‹

We're excited to announce ComBayNS workshop: Combining Bayesian & Neural Approaches for Structured Data ๐ŸŒ

Submit your paper and join us in Rome for #IJCNN2025! ๐Ÿ‡ฎ๐Ÿ‡น

๐Ÿ“… Papers Due: March 20th, 2025 ๐Ÿ“œ
Webpage: combayns2025.github.io

13.02.2025 09:18 โ€” ๐Ÿ‘ 9    ๐Ÿ” 4    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 1
Post image

๐Ÿš€ Exciting news! Our paper "Learning to Discretize Diffusion ODEs" has been accepted as an Oral at #ICLR2025! ๐ŸŽ‰

[1/n]
We propose LD3, a lightweight framework that learns the optimal time discretization for sampling from pre-trained Diffusion Probabilistic Models (DPMs).

13.02.2025 08:30 โ€” ๐Ÿ‘ 12    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1

Very excited to announce the Neurosymbolic Generative Models special track at NeSy 2025! Looking forward to all your submissions!

20.12.2024 20:43 โ€” ๐Ÿ‘ 20    ๐Ÿ” 3    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
The dark side of the forces: assessing non-conservative force models for atomistic machine learning The use of machine learning to estimate the energy of a group of atoms, and the forces that drive them to more stable configurations, have revolutionized the fields of computational chemistry and mate...

arxiv.org/abs/2412.11569, a very relevant effort!

17.12.2024 07:07 โ€” ๐Ÿ‘ 11    ๐Ÿ” 3    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0
Post image

Catch my poster tomorrow at the NeurIPS MLSB Workshop! We present a simple (yet effective ๐Ÿ˜) multimodal Transformer for molecules, supporting multiple 3D conformations & showing promise for transfer learning.

Interested in molecular representation learning? Letโ€™s chat ๐Ÿ‘‹!

15.12.2024 00:31 โ€” ๐Ÿ‘ 10    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

We will run out of data for pretraining and see diminishing returns. In many application domains such as in the sciences we also have to be very careful on what data we pretrain to be effective. It is important to adaptively generate new data from physical simulators. Excited about the work below

14.12.2024 13:02 โ€” ๐Ÿ‘ 9    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

I'll present our paper in the afternoon poster session at 4:30pm - 7:30 pm in East Exhibit Hall A-C, poster 3304!

12.12.2024 18:54 โ€” ๐Ÿ‘ 3    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

Neural surrogates can accelerate PDE solving but need expensive ground-truth training data. Can we reduce the training data size with active learning (AL)? In our NeurIPS D3S3 poster, we introduce AL4PDE, an extensible AL benchmark for autoregressive neural PDE solvers. ๐Ÿงต

11.12.2024 18:22 โ€” ๐Ÿ‘ 12    ๐Ÿ” 3    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 2

Join us today at #NeurIPS2024 for our poster presentation:

Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing

๐Ÿ—“๏ธ When: Wed, Dec 11, 11 a.m. โ€“ 2 p.m. PST
๐Ÿ“ Where: East Exhibit Hall A-C, Poster #4107

#MachineLearning #InteratomicPotentials #Equivariance #GraphNeuralNetworks

11.12.2024 15:38 โ€” ๐Ÿ‘ 5    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Transferability of atom-based neural networks - IOPscienceSearch Transferability of atom-based neural networks, Frederik ร˜ Kjeldal, Janus J Eriksen

"Transferability of atom-based neural networks" authored by @januseriksen.bsky.social (thanks for publishing with us, amazing work!) is now out as part of the #QuantumChemistry and #ArtificialIntelligence focus collection #MachineLearningScienceandTechnology. Link: iopscience.iop.org/article/10.1...

10.12.2024 20:06 โ€” ๐Ÿ‘ 6    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

1/6 We're excited to share our #NeurIPS2024 paper: Probabilistic Graph Rewiring via Virtual Nodes! It addresses key challenges in GNNs, such as over-squashing and under-reaching, while reducing reliance on heuristic rewiring. w/ Chendi Qian, @christophermorris.bsky.social @mniepert.bsky.social ๐Ÿงต

07.12.2024 17:50 โ€” ๐Ÿ‘ 30    ๐Ÿ” 7    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Transferability of atom-based neural networks - IOPscienceSearch Transferability of atom-based neural networks, Frederik ร˜ Kjeldal, Janus J Eriksen

New #compchem paper out in MLST. We study the transferability of both invariant and equivariant neural networks when training these either exclusively on total molecular energies or in combination with data from different atomic partitioning schemes:

iopscience.iop.org/article/10.1...

07.12.2024 08:49 โ€” ๐Ÿ‘ 24    ๐Ÿ” 5    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

You should take a look at this if you want to know how to use Cartesian (instead of spherical) tensors for building equivariant MLIPs.

06.12.2024 14:57 โ€” ๐Ÿ‘ 11    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

๐Ÿ“ฃ Can we go beyond state-of-the-art message-passing models based on spherical tensors such as #MACE and #NequIP?

Our #NeurIPS2024 paper explores higher-rank irreducible Cartesian tensors to design equivariant #MLIPs.

Paper: arxiv.org/abs/2405.14253
Code: github.com/nec-research...

06.12.2024 14:45 โ€” ๐Ÿ‘ 13    ๐Ÿ” 2    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 2
Efficient Learning of Discrete-Continuous Computation Graphs

We analyzed the behavior of Gumbel softmax in complex stochastic computation graphs. Itโ€™s a combination of vanishing gradients and a tendency to fall into poor local minima, underutilizing available categories. We also have some ideas for improvements. proceedings.neurips.cc/paper/2021/h...

30.11.2024 10:51 โ€” ๐Ÿ‘ 21    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

@ropeharz.bsky.social forced me to do this starter pack on #tractable #probabilistic modeling and #reasoning in #AI and #ML

please write below if you want to be added (and sorry if I did not find you from the beginning).

go.bsky.app/DhVNyz5

29.11.2024 13:11 โ€” ๐Ÿ‘ 51    ๐Ÿ” 15    ๐Ÿ’ฌ 11    ๐Ÿ“Œ 0
BilateralAI โ€“ Bilateral AI โ€“ Cluster of Excellence

Amazing opportunity for #Neurosymbolic folks! ๐Ÿšจ๐Ÿšจ๐Ÿšจ

We are looking for a Tenure Track Prof for the ๐Ÿ‡ฆ๐Ÿ‡น #FWF Cluster of Excellence Bilateral AI (think #NeSy ++) www.bilateral-ai.net A nice starting pack for fully funded PhDs is included.

jobs.tugraz.at/en/jobs/226f...

28.11.2024 10:42 โ€” ๐Ÿ‘ 15    ๐Ÿ” 11    ๐Ÿ’ฌ 3    ๐Ÿ“Œ 2

๐Ÿ™‹โ€โ™‚๏ธ

27.11.2024 07:02 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

I havenโ€™t read it carefully, but +1 to works like the one below. It mentions learning artifacts from discreetness. We saw some things like that in this paper, where bad integration of the true Hamiltonian did worse than a learned model (that absorbed artifacts).
arxiv.org/abs/1909.12790

26.11.2024 13:17 โ€” ๐Ÿ‘ 27    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

๐Ÿ™‹โ€โ™‚๏ธ

24.11.2024 18:39 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

@mniepert is following 20 prominent accounts