Emanuele Marconato's Avatar

Emanuele Marconato

@ema-ridopoco.bsky.social

Post-doc @ University of Trento. I did my PhD @ University of Trento and the University of Pisa. I like #concepts, #symbols, and #representations, but I still don't know what they are. ๐Ÿ“ Trento, Italy ๐Ÿงต #identifiability, #shortcuts, #interpretability

272 Followers  |  273 Following  |  22 Posts  |  Joined: 21.11.2024  |  1.744

Latest posts by ema-ridopoco.bsky.social on Bluesky

https://arxiv.org/abs/2410.23501

Joint work with Sebastian Weichwald, Sebastien Lachapelle, and Luigi Gresele ๐Ÿ™

For more info, check the full paper ๐Ÿ‘‡

arxiv.org/abs/2410.235...

17.06.2025 15:12 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

๐ŸงตSummary

A mathematical proof that, under suitable conditions, linear properties hold for either all or none of the equivalent models with same next-token distribution ๐Ÿ˜Ž

Exciting open questions on empirical findings remain๐Ÿค” - check Section 6 (Discussion) in the paper!

8/9

17.06.2025 15:12 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

3โƒฃ We demonstrate what linear properties are shared by all or none LLMs.

๐Ÿ”ฅ Under mild assumptions, relational linear properties are shared!

โš ๏ธ Parallel vectors may not be shared (they are under diversity)!

7/9

17.06.2025 15:12 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

We also describe other linear properties: linear subspaces, probing, steering, based on relational strings (Paccanaro and Hinton, 2001).

๐Ÿ’กThey arise when the LLM can predict next-tokens for textual queries like: "What is the written language?" for many context strings!

6/9

17.06.2025 15:12 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

2โƒฃ We reformulate linear properties of LLMs based on textual strings, depending on how LLMs predict next tokens

๐Ÿ’กParallel vectors arise from same log-ratios of next-token probs

E.g. same ratio for "easy"/"easiest" and "strong"/"strongest" in all contexts => parallel vecs

5/9

17.06.2025 15:12 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

๐Ÿ’กThe extended linear equivalence underlies that two models' representations are linearly related, but in a subspace

โ€ผ๏ธOutside that subspace, representations can differ a lot!

4/9

17.06.2025 15:12 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

1โƒฃWe extend the results by Khemakem et al. (2020), Roeder et al. (2021), removing a diversity assumption.

For the first time, we relate models with different repr. dimensions & find that repr.s of LLMs with same distribution are related by an โ€œextended linear equivalenceโ€!

3/9

17.06.2025 15:12 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Contributions:

1โƒฃ An identifiability result for LLMs
2โƒฃA ๐™ง๐™š๐™ก๐™–๐™ฉ๐™ž๐™ค๐™ฃ๐™–๐™ก reformulation of linear properties
3โƒฃ A proof of what properties are ๐™˜๐™ค๐™ซ๐™–๐™ง๐™ž๐™–๐™ฃ๐™ฉ (~to Physics, cf. Villar et al. (2023)): hold for all or none of the LLMs with same next-token distribution

2/9

17.06.2025 15:12 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

๐ŸงตWhy are linear properties so ubiquitous in LLM representations?

We explore this question through the lens of ๐—ถ๐—ฑ๐—ฒ๐—ป๐˜๐—ถ๐—ณ๐—ถ๐—ฎ๐—ฏ๐—ถ๐—น๐—ถ๐˜๐˜†:

โ€œAll or None: Identifiable Linear Properties of Next-token Predictors in Language Modelingโ€

Published at #AISTATS2025๐ŸŒด

1/9

17.06.2025 15:12 โ€” ๐Ÿ‘ 3    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
All or None: Identifiable Linear Properties of Next-Token... We analyze identifiability as a possible explanation for the ubiquity of linear properties across language models, such as the vector difference between the representations of โ€œeasyโ€ and โ€œeasiestโ€...

@yanai.bsky.social this is very interesting!! FYI, we studied the ubiquity, rather than emergence, of linear relational properties here:

openreview.net/forum?id=XCm...

03.05.2025 02:39 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
All or None: Identifiable Linear Properties of Next-Token... We analyze identifiability as a possible explanation for the ubiquity of linear properties across language models, such as the vector difference between the representations of โ€œeasyโ€ and โ€œeasiestโ€...

Now in Thailand to present our paper at #AISTATS2025 ๐Ÿ‡น๐Ÿ‡ญ๐ŸŒด

๐Ÿ“Today at 3:00-6:00 pm, poster number 118!

More details here:

openreview.net/forum?id=XCm...

03.05.2025 02:36 โ€” ๐Ÿ‘ 2    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Tesi etd-01262025-170550

Only yesterday I discovered that my PhD thesis has been made public to everyone ๐Ÿ˜…

I worked three years on "Learning concepts" and I tried to spot the connection between #concepts, #symbols, and #representations, and how they're used in ML today ๐Ÿ‘พ๐Ÿช„

etd.adm.unipi.it/t/etd-012620...

17.04.2025 07:22 โ€” ๐Ÿ‘ 13    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 2
Post image

Hey hey! We have an accepted paper at #AISTATS2025!!
Time to prepare for Thailand ๐Ÿชท๐Ÿ–๏ธ๐ŸŒด๐Ÿ’

Huge thanks to my coauthors
Luigi Gresele, Sebastian Weichwald, and @seblachap.bsky.social for all the joint effort!

More details soon ๐Ÿ‘‡

arxiv.org/abs/2410.235...

23.01.2025 12:18 โ€” ๐Ÿ‘ 5    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Don't miss the chance to learn more about our new #benchmark suite @ #NeurIPS2024

๐Ÿ“Š New benchmarks to test concept quality learned by all kinds of models: Neural, NeSy, Concept-based, and Foundation models.

๐Ÿค” All models learn to solve the task but, beware, do they learn concepts??

Spoiler: ๐Ÿ˜ฑ

11.12.2024 12:39 โ€” ๐Ÿ‘ 4    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

๐Ÿ“ฃ Does your model learn high-quality #concepts, or does it learn a #shortcut?

Test it with our #NeurIPS2024 dataset & benchmark track paper!

rsbench: A Neuro-Symbolic Benchmark Suite for Concept Quality and Reasoning Shortcuts

What's the deal with rsbench? ๐Ÿงต

10.12.2024 19:10 โ€” ๐Ÿ‘ 35    ๐Ÿ” 8    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 4

The #NeurIPS experience is about to start! โœˆ

Drop me a line if you want to chat about #neurosymbolic reasoning #shortcuts, human-interpretable machine #concepts, logically-consistent #LLMs, or human-in-the-โžฐ #XAI!

See you in Vancouver!

09.12.2024 01:25 โ€” ๐Ÿ‘ 11    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

For those attending #NeurIPS2024 go to UNIREPS @unireps.bsky.social workshop to know more about representations similarity. Nice work led by @beatrixmgn.bsky.social ๐ŸŒŸ

06.12.2024 16:21 โ€” ๐Ÿ‘ 10    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

๐Ÿšจ Interpretable AI often means sacrificing accuracyโ€”but what if we could have both? Most interpretable AI models, like Concept Bottleneck Models, force us to trade accuracy for interpretability.

But not anymore, due to Concept-Based Memory Reasoner (CMR)! #NeurIPS2024 (1/7)

04.12.2024 08:45 โ€” ๐Ÿ‘ 24    ๐Ÿ” 7    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0

Ask you to please add me :)

04.12.2024 08:23 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

We are the premier conference on #uncertainty in #AI and #ML since 1985 ๐Ÿง“

Hello, ๐Ÿฆ‹!

Follow us to reduce uncertainty!

03.12.2024 16:08 โ€” ๐Ÿ‘ 29    ๐Ÿ” 12    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 2

Then I agree ๐Ÿ˜„

02.12.2024 19:54 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

What is the precise definition of feature?

02.12.2024 19:33 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

I would like to ask for some back stabs to reviewer 2 ๐Ÿคฌ

28.11.2024 18:41 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

I know @looselycorrect.bsky.social well enough eheh

21.11.2024 18:41 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
The Symbol Grounding Problem

A symbol is a "physical token" (Harnad 1990, arxiv.org/html/cs/9906...)

21.11.2024 18:20 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0

Do you have answers? ๐Ÿ˜

21.11.2024 18:14 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

@ema-ridopoco is following 19 prominent accounts