David Debot's Avatar

David Debot

@daviddebot.bsky.social

PhD student @dtai-kuleuven.bsky.social in neurosymbolic AI and concept-based learning https://daviddebot.github.io/

175 Followers  |  238 Following  |  16 Posts  |  Joined: 04.12.2024  |  1.6787

Latest posts by daviddebot.bsky.social on Bluesky

Just under 10 days left to submit your latest endeavours in #tractable probabilistic models!

Join us at TPM @auai.org #UAI2025 and show how to build #neurosymbolic / #probabilistic AI that is both fast and trustworthy!

14.05.2025 17:48 โ€” ๐Ÿ‘ 11    ๐Ÿ” 9    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

We developed a library to make logical reasoning embarrasingly parallel on the GPU.

For those at ICLR ๐Ÿ‡ธ๐Ÿ‡ฌ: you can get the juicy details tomorrow (poster #414 at 15:00). Hope to see you there!

23.04.2025 08:12 โ€” ๐Ÿ‘ 24    ๐Ÿ” 7    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 2

If you're at #AAAI2025, come check out our demo on neurosymbolic reinforcement learning with probabilistic logic shields ๐Ÿค– Tomorrow (Sat, March 1) from 12:30โ€“2:30 PM during the poster session ๐Ÿ’ป

28.02.2025 22:53 โ€” ๐Ÿ‘ 4    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

We all know backpropagation can calculate gradients, but it can do much more than that!

Come to my #AAAI2025 oral tomorrow (11:45, Room 119B) to learn more.

27.02.2025 23:45 โ€” ๐Ÿ‘ 27    ๐Ÿ” 10    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

๐Ÿ”ฅ Can AI reason over time while following logical rules in relational domains? We will present Relational Neurosymbolic Markov Models (NeSy-MMs) next week at #AAAI2025! ๐ŸŽ‰

๐Ÿ“œ Paper: arxiv.org/pdf/2412.13023
๐Ÿ’ป Code: github.com/ML-KULeuven/...

๐Ÿงตโฌ‡๏ธ

25.02.2025 11:01 โ€” ๐Ÿ‘ 24    ๐Ÿ” 11    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1

See you at #AAAI2025!

Site: dtai.cs.kuleuven.be/projects/nes...

Video: youtu.be/3uLVxwlcSQc?...

@daviddebot.bsky.social, @gabventurato.bsky.social, @giuseppemarra.bsky.social, @lucderaedt.bsky.social

#ReinforcementLearning #AI #MachineLearning #NeurosymbolicAI
(8/8)

24.02.2025 12:29 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Open-source & easy to use!
๐Ÿ”ท Code: github.com/ML-KULeuven/...
๐Ÿ”ท Based on MiniHack & Stable Baselines3
๐Ÿ”ท Define new shields in just a few lines of code!

๐Ÿš€ Letโ€™s make RL safer & smarter, together!
(7/8)

24.02.2025 12:28 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Want to try it yourself? ๐ŸŽฎ

Use our interactive web demo!
๐Ÿ”ท Modify environments (add lava, monsters!)
๐Ÿ”ท Test shielded vs. non-shielded agents

๐Ÿ–ฅ๏ธ Play with it here: dtai.cs.kuleuven.be/projects/nes...
(6/8)

24.02.2025 12:28 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Why does this matter?
๐Ÿ”ท Faster training โŒ›
๐Ÿ”ท Safer exploration ๐Ÿ”’
๐Ÿ”ท Better generalization ๐ŸŒ
(5/8)

24.02.2025 12:27 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

How does it work? ๐Ÿค”๐Ÿ›ก๏ธ

The shield:
โœ… Exploits symbolic data from sensors ๐ŸŒ
โœ… Uses logical rules ๐Ÿ“œ
โœ… Prevents unsafe actions ๐Ÿšซ
โœ… Still allows flexible learning ๐Ÿค–

A perfect blend of symbolic reasoning & deep learning!
(4/8)

24.02.2025 12:27 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Enter MiniHack, our demo's testing ground! ๐Ÿฐ๐Ÿ—ก๏ธ

There, RL agents face:
โœ… Lava cliffs & slippery floors
โœ… Chasing monsters
โœ… Locked doors needing keys

Findings:
๐Ÿ”ท Standard RL struggles to find an optimal, safe policy.
๐Ÿ”ท Shielded RL agents stay safe & learn faster!
(3/8)

24.02.2025 12:27 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Deep RL is powerful, but...
โš ๏ธ It can take dangerous actions
โš ๏ธ It lacks safety guarantees
โš ๏ธ It struggles with real-world constraints

Yang et al.'s probabilistic logic shields fix this, enforcing safety without breaking learning efficiency! ๐Ÿš€
(2/8)

24.02.2025 12:26 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

๐Ÿš€ Do you care about safe AI? Do you want RL agents that are both smart & trustworthy?

At #AAAI2025, we present our demo for neurosymbolic RLโ€”combining deep learning with probabilistic logic shields for safer, interpretable AI in complex environments. ๐Ÿฐ๐Ÿ”ฅ
๐Ÿงต๐Ÿ‘‡
(1/8)

24.02.2025 12:26 โ€” ๐Ÿ‘ 6    ๐Ÿ” 4    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1
Interpretable Concept-Based Memory Reasoning - NeurIPS 2024
YouTube video by David Debot Interpretable Concept-Based Memory Reasoning - NeurIPS 2024

A short overview video can be found on YouTube: youtu.be/CgSDhQKESD0?...

#NeurIPS2024

23.12.2024 10:23 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Or check out our Medium post: ๐Ÿ‘‰ medium.com/@pyc.devteam... (7/7)

04.12.2024 08:50 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
NeurIPS Poster Interpretable Concept-Based Memory ReasoningNeurIPS 2024

With CMR, weโ€™re reaching the sweet spot of accuracy and interpretability. Check it out at our poster at #NeurIPS2024! ๐Ÿ‘‰ neurips.cc/virtual/2024... (6/7)

04.12.2024 08:49 โ€” ๐Ÿ‘ 3    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

During training, CMR learns embeddings as latent representations of logic rules, and a neural rule selector identifies the most relevant rule for each instance. Due to a clever factorization and rule selector, inference is linear in the number of concepts and rules. (5/7)

04.12.2024 08:49 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

CMR makes a prediction in 3 steps:
1) Predict concepts from the input
2) Neurally select a rule from a memory of learned logic rules โžจ Accuracy
3) Evaluate the selected rule with the concepts to make a final prediction โžจ Interpretability (4/7)

04.12.2024 08:48 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

CMR has:
โšก State-of-the-art accuracy that rivals black-box models
๐Ÿš€ Pure probabilistic semantics with linear-time exact inference
๐Ÿ‘๏ธ Transparent decision-making so human users can interpret model behavior
๐Ÿ›ก๏ธ Pre-deployment verifiability of model properties (3/7)

04.12.2024 08:47 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

CMR is our latest neurosymbolic concept-based model. A proven ๐˜ถ๐˜ฏ๐˜ช๐˜ท๐˜ฆ๐˜ณ๐˜ด๐˜ข๐˜ญ ๐˜ฃ๐˜ช๐˜ฏ๐˜ข๐˜ณ๐˜บ ๐˜ค๐˜ญ๐˜ข๐˜ด๐˜ด๐˜ช๐˜ง๐˜ช๐˜ฆ๐˜ณ irrespective of the concept set, CMR achieves near-black-box accuracy by combining ๐—ฟ๐˜‚๐—น๐—ฒ ๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด and ๐—ป๐—ฒ๐˜‚๐—ฟ๐—ฎ๐—น ๐—ฟ๐˜‚๐—น๐—ฒ ๐˜€๐—ฒ๐—น๐—ฒ๐—ฐ๐˜๐—ถ๐—ผ๐—ป! (2/7)

04.12.2024 08:47 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

๐Ÿšจ Interpretable AI often means sacrificing accuracyโ€”but what if we could have both? Most interpretable AI models, like Concept Bottleneck Models, force us to trade accuracy for interpretability.

But not anymore, due to Concept-Based Memory Reasoner (CMR)! #NeurIPS2024 (1/7)

04.12.2024 08:45 โ€” ๐Ÿ‘ 24    ๐Ÿ” 7    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0

@daviddebot is following 20 prominent accounts