Antoine Collas's Avatar

Antoine Collas

@antoinecollas.bsky.social

Postdoctoral researcher at Inria in machine learning.

47 Followers  |  50 Following  |  12 Posts  |  Joined: 18.11.2024  |  1.7054

Latest posts by antoinecollas.bsky.social on Bluesky

SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods... Unsupervised Domain Adaptation (DA) consists of adapting a model trained on a labeled source domain to perform well on an unlabeled target domain with some data distribution shift. While many...

SKADA-Bench : Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation On Diverse Modalities, has been published published in TMLR today ๐Ÿš€. It was a huge team effort to design (and publish) an open source fully reproducible DA benchmark ๐Ÿงต1/n. openreview.net/forum?id=k9F...

29.07.2025 12:54 โ€” ๐Ÿ‘ 16    ๐Ÿ” 7    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets Combining electroencephalogram (EEG) datasets for supervised machine learning (ML) is challenging due to session, subject, and device variability. ML algorithms typically require identical features at...

Our EEG montage interpolation method is now in MNE-Python 1.10!

Based on our EUSIPCO 2024 paper, .interpolate_to() maps signals across caps in one lineโ€”ideal for preprocessing EEG before training AI models across datasets.

๐Ÿ“„ arxiv.org/abs/2403.15415
๐Ÿง  mne.tools/stable/auto_...

#EEG #MNEPython #AI

21.07.2025 06:48 โ€” ๐Ÿ‘ 7    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

Skada Sprint Alert: Contribute to Domain Adaptation in Python

๐Ÿ“– Machine learning models often fail when the data distribution changes between training and testing. Thatโ€™s where Domain Adaptation comes in โ€” helping models stay reliable across domains.

20.05.2025 09:30 โ€” ๐Ÿ‘ 12    ๐Ÿ” 6    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Opinion of the day: we don't desk reject enough in ML. Too much energy is wasted in 4x reviewing papers that will *obviously* be rejected.

Second opinion otd: we don't teach enough students to be positive. We should not seek how to reject a paper, but how to accept it.

And yes, #1 has a role in #2

11.04.2025 12:47 โ€” ๐Ÿ‘ 14    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

We have been reworking the Quickstart guide of POT to show multiple examples of OT with the unified API that facilitates access to OT value/plan/potentials. It allows to select regularization/unbalancedness/lowrank/Gaussian OT with just a few parameters. pythonot.github.io/master/auto_...

26.03.2025 07:39 โ€” ๐Ÿ‘ 32    ๐Ÿ” 11    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Screengrab of the SVM-KM page

Screengrab of the SVM-KM page

It's been 20 years and I think the new generation need to know about the SVM-KM toolbox. It was a Matlab open source SVM toolbox created in 2005 by @scanu.bsky.social, Yves Grandvalet, Vincent Guige, and Alain Rakotomamonjy 1/n github.com/rflamary/SVM...

14.02.2025 16:11 โ€” ๐Ÿ‘ 22    ๐Ÿ” 6    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1

@tommoral.bsky.social @agramfort.bsky.social

12.02.2025 15:31 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

We put lots of effort to benchmark domain adaptation on many modalities๐Ÿ‘‡๐Ÿป๐Ÿ‘‡๐Ÿป

12.02.2025 15:30 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Gaรซl Varoquaux, vedette de lโ€™intelligence artificielle et dรฉfenseur du logiciel libre Lโ€™informaticien et chercheur ร  lโ€™Inria est lโ€™expert franรงais le plus citรฉ dans les publications scientifiques portant sur lโ€™IA. Avec Scikit-learn, un programme de machine learning dont il est le cocrรฉ...

Merci @lemonde.fr pour un joli rรฉsumรฉ de mes aventures scientifiques et logiciels ๐Ÿ“ˆ๐Ÿ“ 
www.lemonde.fr/sciences/art...

Beaucoup de messages qui me tiennent ร  cล“ur : travail d'รฉquipe, logiciel libre, rigueur scientifique

Merci aux collรจgues et amis qui ont tรฉmoignรฉ, je suis รฉmu de lire

15.12.2024 05:35 โ€” ๐Ÿ‘ 123    ๐Ÿ” 25    ๐Ÿ’ฌ 7    ๐Ÿ“Œ 2

Super proud of this work! DA is the way to go for many applications and Skada will democratize it!

06.12.2024 15:55 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

๐Ÿš€ Skada v0.4.0 is out!

Skada is an open-source Python library built for domain adaptation (DA), helping machine learning models to adapt to distribution shifts.
Github: github.com/scikit-adapt...
Doc: scikit-adaptation.github.io
DOI: doi.org/10.5281/zeno...
Installation: `pip install skada`

06.12.2024 15:50 โ€” ๐Ÿ‘ 10    ๐Ÿ” 6    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 2

7/ GOPSA offers a robust solution for addressing joint (X, y) shifts in EEG data, significantly improving model generalization. It integrates Riemannian geometry with mixed-effects modeling, providing novel tools for generating neuroscientific and clinical insights.

04.12.2024 09:07 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

6/ ๐ŸŽฏ Re-centering sites helped reduce the shift in X, while not placing all sites at the exact same reference point helped manage the shift in y. This preserves the statistical associations between X and y, improving model generalization.

04.12.2024 09:07 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

5/ ๐Ÿ“Š Our benchmark on the HarMNqEEG dataset showed significant improvement in performance for three metrics across most site combinations of GOPSA compared to baseline methods.

04.12.2024 09:07 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

4/ ๐Ÿ“Š Results on simulated data show how GOPSA adapts to various degrees of shifts in X and y. Panel C illustrates that GOPSA is specifically designed to handle joint shifts in X and y.

04.12.2024 09:07 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

3/๐Ÿ’กOur method, GOPSA, jointly learns parallel transport along a geodesic for each domain and a global regression model common to all domains, assuming that the mean y can be estimated.

04.12.2024 09:07 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

2/ Multicenter neuroscience datasets often face shifts in both feature (X) and label (y) distributions. Our work specifically addresses cases where features are covariance matrices and focuses on joint (X, y) dataset shifts in EEG data.
๏ฟผ

04.12.2024 09:07 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Geodesic Optimization for Predictive Shift Adaptation on EEG data Electroencephalography (EEG) data is often collected from diverse contexts involving different populations and EEG devices. This variability can induce distribution shifts in the data $X$ and in the b...

Next week, weโ€™ll present our spotlight paper at #NeurIPS2024 on domain adaptation for EEG data. Join us in East Exhibit Hall A-C on Friday at 4:30 PM!

arxiv.org/abs/2407.03878

Apolline Mellot @sylvchev.bsky.social @agramfort.bsky.social @dngman.bsky.social

A thread: 1/7

04.12.2024 09:07 โ€” ๐Ÿ‘ 7    ๐Ÿ” 2    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

Good, published, benchmarks of machine learning / data science is crucial.

But so hard.
Well-cited "SOTA" methods typically crash often. They tend to be very computational expensive. Both make a systematic study impossible.

Finally, reviewers always ask for more methods, and more "SOTA".

01.12.2024 16:54 โ€” ๐Ÿ‘ 52    ๐Ÿ” 6    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0

@rflamary.bsky.social @ambroiseodt.bsky.social shared feelings ๐Ÿ˜…

01.12.2024 17:22 โ€” ๐Ÿ‘ 4    ๐Ÿ” 0    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0

Apolline Mellot, Antoine Collas, Sylvain Chevallier, Alexandre Gramfort, Denis A. Engemann
Geodesic Optimization for Predictive Shift Adaptation on EEG data
https://arxiv.org/abs/2407.03878

08.07.2024 04:01 โ€” ๐Ÿ‘ 2    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

@antoinecollas is following 20 prominent accounts