Théo Gnassounou's Avatar

Théo Gnassounou

@tgnassou.bsky.social

Ph.D. student in Machine Learning and Domain Adaptation for Neuroscience at Inria Saclay/ Mind. Website: https://tgnassou.github.io/ Skada: https://scikit-adaptation.github.io/

45 Followers  |  20 Following  |  17 Posts  |  Joined: 06.12.2024  |  2.0521

Latest posts by tgnassou.bsky.social on Bluesky

Post image

Figure 1. Happy ML researcher and open source developer presenting his toolbox SKADA at PyData Paris. Congrats @tgnassou.bsky.social the presentation was awesome!

30.09.2025 15:27 — 👍 9    🔁 1    💬 0    📌 0
Preview
GitHub - scikit-adaptation/skada: Domain adaptation toolbox compatible with scikit-learn and pytorch Domain adaptation toolbox compatible with scikit-learn and pytorch - scikit-adaptation/skada

📩 Message me if you’d like to participate!

Skada: github.com/scikit-adapt...

20.05.2025 09:30 — 👍 1    🔁 0    💬 0    📌 0

🎯 Goal of the Skada Coding Sprint
- Improve Skada: add new methods, improve documentation, fix bugs ...
- Contribute to open source in a welcoming environment
- Collaborate with a community of ML researchers and developers
- Implement and test your own Domain Adaptation methods
- Have a lot of fun!

20.05.2025 09:30 — 👍 1    🔁 0    💬 1    📌 0

💡 To make it easier for everyone to apply these techniques, we built Skada: a simple, Python-based library for Domain Adaptation.

Skada team organizes a coding sprint :(@rflamary.bsky.social , @antoinecollas.bsky.social , @ambroiseodt.bsky.social)

📍 When: June 24–25
📍 Where: Inria Saclay

20.05.2025 09:30 — 👍 2    🔁 1    💬 1    📌 0
Post image

Skada Sprint Alert: Contribute to Domain Adaptation in Python

📖 Machine learning models often fail when the data distribution changes between training and testing. That’s where Domain Adaptation comes in — helping models stay reliable across domains.

20.05.2025 09:30 — 👍 12    🔁 6    💬 1    📌 0
LinkedIn This link will take you to a page that’s not on LinkedIn

SKADA-Bench is built on SKADA: github.com/scikit-adapt...

This work results from a collaboration with Yanis Lalou, @antoinecollas.bsky.social , Antoine de Mathelin, Oleksii Kachaiev, @ambroiseodt.bsky.social , Alexandre Gramfort, Thomas Moreau and @rflamary.bsky.social !

12.02.2025 15:17 — 👍 1    🔁 0    💬 1    📌 0
Post image

The benchmark shows deep DA methods struggle beyond computer vision, highlighting their limits on other modalities!

12.02.2025 15:17 — 👍 1    🔁 0    💬 1    📌 0
Post image

The results show the benefit of DA in some cases but parameter-sensitive shallow methods struggle to adapt to new domains. Better to use low-parameter methods like LinOT & Coral!

12.02.2025 15:17 — 👍 1    🔁 0    💬 1    📌 0
Post image

This benchmark is done using a realistic scenario comprising the validation of hyperparameters using nested loop and DA scorers!

12.02.2025 15:17 — 👍 1    🔁 0    💬 1    📌 0
Post image

🔬 What’s inside?
• Multi-Modality Benchmark: 4 simulated + 8 real datasets
• 20 Shallow DA Methods: Reweighting, mapping, subspace alignment & others
• 7 Deep DA Methods: CAN, MCC, MDD, SPA & more
• 7 Unsupervised Validation Scorers

12.02.2025 15:17 — 👍 1    🔁 0    💬 1    📌 0
Post image

DA adapts machine learning models to distribution shifts between training and test sets. We propose SKADA-Bench, the first comprehensive, reproducible benchmark that evaluates DA methods across multiple modalities: computer vision, natural language processing, tabular, and biomedical data.

12.02.2025 15:17 — 👍 2    🔁 0    💬 1    📌 0
Post image

🚀 I’m pleased to announce a new preprint!

"SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation On Diverse Modalities"

📢 Check it out & contribute!
📜 Paper: arxiv.org/abs/2407.11676
💻 Code: github.com/scikit-adapt...

12.02.2025 15:17 — 👍 13    🔁 5    💬 1    📌 2

This library is a team effort: @antoinecollas.bsky.social, Oleksii Kachaiev, @rflamary.bsky.social , Yanis Lalou, Antoine de Mathelin, Ruben Bueno, Apolline Mellot, @ambroiseodt.bsky.social , Alexandre Gramfort and myself!

06.12.2024 15:50 — 👍 3    🔁 0    💬 0    📌 0

🔀 Improved Subsampling Tools
- Added StratifiedDomainSubsampler and DomainSubsampler to handle large datasets effortlessly.

🤖 Deep Model Enhancements
- Smarter batch handling.
- Many bug fixes.

📖 Documentation Upgrades
- Contributor Guide: Join the development of Skada!
- New Logo!!

06.12.2024 15:50 — 👍 0    🔁 0    💬 1    📌 0
Post image

📊 Advanced Scorers
- New MixValScorer for mixup validation.
- Enhanced scorer compatibility with deep models.

06.12.2024 15:50 — 👍 0    🔁 0    💬 1    📌 0
Post image

💡New Deep Domain Adaptation Methods: CAN, SPA, MCC, and MDD.These methods combine the cross entropy loss on the source domain with domain aware losses (graph based, adversarial, class confusion, …).

06.12.2024 15:50 — 👍 0    🔁 0    💬 1    📌 0
Post image

💡New Shallow Domain Adaptation Methods: MongeAlignment and JCPOT for linear multi-source domain adaptation with optimal transport.

06.12.2024 15:50 — 👍 0    🔁 0    💬 1    📌 0
Post image

🚀 Skada v0.4.0 is out!

Skada is an open-source Python library built for domain adaptation (DA), helping machine learning models to adapt to distribution shifts.
Github: github.com/scikit-adapt...
Doc: scikit-adaptation.github.io
DOI: doi.org/10.5281/zeno...
Installation: `pip install skada`

06.12.2024 15:50 — 👍 10    🔁 6    💬 1    📌 2

@tgnassou is following 20 prominent accounts