Blas Kolic's Avatar

Blas Kolic

@blas-ko.bsky.social

Complex systems, Networks, Computational Social Science, Machine Learning Postdoc at uc3m-IBiDat, Madrid https://blas-ko.github.io/

33 Followers  |  83 Following  |  10 Posts  |  Joined: 11.09.2025  |  2.5193

Latest posts by blas-ko.bsky.social on Bluesky

Preview
Comparing Data Assimilation and Likelihood-Based Inference on Latent State Estimation in Agent-Based Models In this paper, we present the first systematic comparison of Data Assimilation (DA) and Likelihood-Based Inference (LBI) in the context of Agent-Based Models (ABMs). These models generate observable t...

While limited to one ABM, this work fills a critical gap in the ABM calibration literature, providing the first structured comparison of DA and LBI for latent state inference.

Kudos to Marco, Corrado, and Gianmarco for such a wonderful collaboration!

Hope you enjoy it
πŸ‘‰ arxiv.org/abs/2509.17625

06.10.2025 07:53 β€” πŸ‘ 1    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0

βš–οΈ Essentially:
βž– DA: Great for macro-level patterns. Easy to apply, doesn’t need a formal likelihood.
βž–LBI: Superior for micro-level accuracy, but needs explicit likelihoods (often hard to derive).

➑️ Trade-off between generality and precision.

06.10.2025 07:53 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

πŸ“Š Main results:
βž– At the agent level, LBI outperforms DA in reconstructing latent opinions. LBI is more accurate and robust to model errors.
βž– At the aggregate level, both methods perform similarly well β†’ DA remains competitive for forecasting population-level trends.

06.10.2025 07:53 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

We test this using the Bounded-Confidence Model of opinion dynamics, where agents interact only if their opinions are sufficiently close, resulting in nonlinear updates.

βš™οΈ Scenarios:
βž– Observed: agent interactions
βž– Latent: agent opinions
βž– Noisy opinions
βž– Mis-specified model parameters

06.10.2025 07:53 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Can we recover the latent agent states (e.g., opinions) from observed data in an ABM?

πŸ†Ž First systematic comparison between:
βž– Data Assimilation (DA) β†’ Approximate, model-agnostic
βž– Likelihood-Based Inference (LBI) β†’ Precise, but model-specific

06.10.2025 07:53 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

🚨 Fresh from ArXiv:
β€œComparing Data Assimilation and Likelihood-Based Inference on Latent State Estimation in Agent-Based Models”
with @marcopangallo.bsky.social, @c0rrad0.bsky.social, & @gdfm.bsky.social
πŸ‘‰ arxiv.org/abs/2509.17625

06.10.2025 07:53 β€” πŸ‘ 9    πŸ” 4    πŸ’¬ 1    πŸ“Œ 0
Validate User

Amazing collab with FabiΓ‘n Aguirre-Lopez and the data science crew at Sinnia, Mexico.

πŸ“„ Journal: doi.org/10.1093/comn...

πŸ“ ArXiv (OA): arxiv.org/abs/2206.14501

πŸ’» Code & plots: github.com/blas-ko/Twit...

22.09.2025 19:25 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Validate User

Last month, we published
"From chambers to echo chambers: quantifying polarization with a second-neighbor approach applied to Twitter’s climate discussion" 🌍πŸ”₯

We find stable climate echo chambers despite ~90% weekly user churn, and show how events like #FridaysForFuture can disrupt polarization.

22.09.2025 19:23 β€” πŸ‘ 4    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

very nasty, indeed

11.09.2025 11:27 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

🌱

11.09.2025 09:48 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

@blas-ko is following 20 prominent accounts