Vaibhav's Avatar

Vaibhav

@vaibhavadlakha.bsky.social

PhD candidate @Mila and @McGill Interested in interplay of knowledge and language Love being outdoors!

753 Followers  |  226 Following  |  68 Posts  |  Joined: 10.11.2024  |  1.4937

Latest posts by vaibhavadlakha.bsky.social on Bluesky

Check out this amazing work by @karstanczak.bsky.social on rethinking LLM alignment through frameworks from multiple disciplines!

04.03.2025 20:17 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Check out the new MMTEB benchmark๐Ÿ™Œ if you are looking for an extensive, reproducible and open-source evaluation of text embedders!

20.02.2025 15:44 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

#Repl4NLP will be co-located with NAACL this year in Albuquerque, New Mexico!

24.12.2024 17:02 โ€” ๐Ÿ‘ 3    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Excited to be at #NeurIPS2024 this week. Happy to meet up and chat about retrievers, RAG, embedders etc, or anything LLM-related!

10.12.2024 18:06 โ€” ๐Ÿ‘ 4    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Would love to join! Thanks!

29.11.2024 18:12 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

(2/2) For me the most important contribution of the work is ScholarQABench, an expert curated benchmark for scientific literature survey.

I'll be using OpenScholar for the next few weeks, I hope to find some good papers!

29.11.2024 16:59 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

(1/2) jumping back into this! read OpenScholar by @akariasai.bsky.social et al

I am quite excited by the abilities of LLMs to assist in scientific discovery and literature review.

29.11.2024 16:59 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Restarting an old routine "Daily Dose of Good Papers" together w @vaibhavadlakha.bsky.social

Sharing my notes and thoughts here ๐Ÿงต

23.11.2024 00:04 โ€” ๐Ÿ‘ 60    ๐Ÿ” 8    ๐Ÿ’ฌ 5    ๐Ÿ“Œ 3

Honoured to be on the list! https://t.co/15CucCbxOu

20.11.2024 17:55 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Join us and be part of an amazing research community! Feel free to reach out of your want to know more about Mila or the application process. https://t.co/Z3QT7hFAS7

15.10.2024 15:45 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Completely agree, super well organised and executed! ๐Ÿ‘ https://t.co/wGkts8EGAb

09.10.2024 20:46 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Excited to welcome @COLM_conf to the city of best bagels! ๐Ÿฅฏ Looking forward to it! https://t.co/wUxyrDr3x6

09.10.2024 20:45 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

A little teaser for LLM2Vec @COLM_conf!

Stop by Tuesday morning poster session to know how we officiated the marriage of BERTs and Llamas! ๐Ÿฆ™ https://t.co/E3HB1mwVvv

05.10.2024 03:59 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

RIP freedom of speech! https://t.co/PXMS9xMnvH

28.08.2024 18:07 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

๐Ÿš€๐Ÿš€ LLMs are the new text encoders! https://t.co/4FZ2LXCPSd

28.08.2024 14:45 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Amazing talk by @PontiEdoardo. ๐Ÿ™Œ๐Ÿš€It is interesting how many different ways exist to make LLMs more efficient! https://t.co/2f2L8zLiH3

15.08.2024 09:50 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

First ever arena for embedding models! โš”๏ธ

Excited to see how this will change evaluation in this space! ๐Ÿš€ https://t.co/H4FoMJrQaA

30.07.2024 16:40 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Looking for an emergency reviewer for EMNLP / ARR familiar with RAG and language models. Please reach out if you can review a paper in the next couple of days.

22.07.2024 07:53 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Great to see LLM2Vec being used for multilingual machine translation! ๐Ÿš€ I believe LLM2Vec will serve as backbone of many more applications in the future! https://t.co/G18aqJ2xuv

19.06.2024 15:32 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

However, this could mean we are past the point where MTEB serves as a useful signal ๐Ÿ‘€. Improving beyond the numbers we are seeing today (by training on synthetic data) carries the risk of optimizing for the benchmark rather than building general purpose embedding models. 5/N

30.04.2024 20:30 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Interestingly, Meta-Llama-3-8B only slightly outperforms Mistral-7B, the previously best model when combined with LLM2Vec ๐Ÿค”. We might have reached a point where better base models are not sufficient to make substantial improvements on MTEB. 3/N

30.04.2024 20:30 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

In the supervised setting, applying LLM2Vec to Meta-Llama-3-8B leads to a new state-of-the-art performance (65.01) on MTEB among models trained on publicly available data only. 2/N https://t.co/UJoOTJ4L5r

30.04.2024 20:30 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Exciting discovery! Triggers DONโ€™T transfer universally ๐Ÿ˜ฎ. Check out the paper for detailed experiments and analysis. https://t.co/Op7gGWBEdb

25.04.2024 14:54 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Applying LLM2Vec costs same as ~2 cappuccinos! https://t.co/O6iFXAJgoB

22.04.2024 14:21 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Very nice and intuitive explanation of our work lLM2Vec by @IntuitMachine!

Using causal LLMs for representation tasks without any architecture modifications is like driving a sports car in reverse ๐ŸŽ๏ธ๐Ÿคฏ

All resources available at our project page - https://t.co/hwAiv2yrPT https://t.co/RfBNydFW9y

12.04.2024 15:31 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Great summary of our recent LLM2Vec paper! Thanks @ADarmouni!

All resources available at our project page - https://t.co/hwAiv2yrPT https://t.co/bY4DoP5ms1

12.04.2024 15:23 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

This is going to be my new way of bookmarking papers now! https://t.co/Dbn5juFBD9

11.04.2024 02:48 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Huggingface paper page by @_akhaliq - https://t.co/MRuPwtYCsZ

10.04.2024 03:18 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

This work was done with wonderful collaborators - @ParishadBehnam @mariusmosbach @DBahdanau @NicolasChapados and @sivareddyg 10/N

10.04.2024 00:20 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

We also analyze how enabling bidirectional attention without training affects the representations of decoder-only LLMs ๐Ÿ”. We find that Mistral-7B is surprisingly good at using bidirectional attention out-of-the-box ๐Ÿคฏ and speculate it was likely trained as a prefix-LM ๐Ÿค”. 7/N https://t.co/rlaub1ZQDC

10.04.2024 00:20 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

@vaibhavadlakha is following 20 prominent accounts