Antonio del Rio Chanona's Avatar

Antonio del Rio Chanona

@antonioe89.bsky.social

Academic at Imperial College London Optimisation and Machine Learning in Systems Engineering PhD Cambridge | UG UNAM ๐Ÿ‡ฒ๐Ÿ‡ฝ he/him https://www.optimlpse.co.uk/people/

37 Followers  |  28 Following  |  8 Posts  |  Joined: 30.11.2024  |  1.8428

Latest posts by antonioe89.bsky.social on Bluesky

Post image

๐Ÿ“ข ๐—ก๐—ฒ๐˜„ ๐—ฝ๐—ฎ๐—ฝ๐—ฒ๐—ฟ alert! We document how ๐—š๐—ฒ๐—ป๐—ฒ๐—ฟ๐—ฎ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—”๐—œ ๐—ถ๐˜€ ๐—ฟ๐—ฒ๐˜€๐—ต๐—ฎ๐—ฝ๐—ถ๐—ป๐—ด ๐—ฑ๐—ฒ๐—บ๐—ฎ๐—ป๐—ฑ ๐—ณ๐—ผ๐—ฟ ๐—ณ๐—ฟ๐—ฒ๐—ฒ๐—น๐—ฎ๐—ป๐—ฐ๐—ฒ๐—ฟ ๐˜€๐—ธ๐—ถ๐—น๐—น๐˜€. ๐Ÿ’ผ ๐Ÿ’ป

๐Ÿ“Š We analysed ๐Ÿฏ๐— + ๐—ท๐—ผ๐—ฏ ๐—ฝ๐—ผ๐˜€๐˜๐˜€, used embeddings to cluster them into ๐Ÿญ๐Ÿฌ๐Ÿฌ+ ๐—ณ๐—ถ๐—ป๐—ฒ-๐—ด๐—ฟ๐—ฎ๐—ถ๐—ป๐—ฒ๐—ฑ ๐˜€๐—ธ๐—ถ๐—น๐—น๐˜€, and LLMs to classify them as s๐˜‚๐—ฏ๐˜€๐˜๐—ถ๐˜๐˜‚๐˜๐—ฎ๐—ฏ๐—น๐—ฒ, ๐—ฐ๐—ผ๐—บ๐—ฝ๐—น๐—ฒ๐—บ๐—ฒ๐—ป๐˜๐—ฎ๐—ฟ๐˜†, or ๐˜‚๐—ป๐—ฎ๐—ณ๐—ณ๐—ฒ๐—ฐ๐˜๐—ฒ๐—ฑ.

29.01.2025 11:59 โ€” ๐Ÿ‘ 26    ๐Ÿ” 14    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 1

๐Ÿšจ New paper alert! Economic Agent Based Models have become increasingly data-driven. What does that mean and what impact can this have? arxiv.org/abs/2412.16591 ๐Ÿ“–โœจ

Chapter with @marcopangallo.bsky.social forthcoming in @sfiscience.bsky.social volume #Economics #ComplexSystems Part IV

๐Ÿ‘‡๐Ÿงต

07.01.2025 18:39 โ€” ๐Ÿ‘ 18    ๐Ÿ” 6    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
MADME 2025: Home MADME 2025 - Home

Multi-Agent Data-driven Economic Conference in Venice

www.unive.it/web/en/8683/...

#Economics #ComplexSystems

14.01.2025 08:02 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Investigating the reliability and interpretability of machine learning frameworks for chemical retrosynthesis Machine learning models for chemical retrosynthesis have attracted substantial interest in recent years. Unaddressed challenges, particularly the absence of robust evaluation metrics for performance c...

๐—ฅ๐—ฒ๐—ฎ๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐—ฃ๐—น๐—ฎ๐—ป๐—ป๐—ถ๐—ป๐—ด ๐˜„๐—ถ๐˜๐—ต ๐——๐—ฒ๐—ฒ๐—ฝ ๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด โš›๏ธ:

โžก๏ธ Machine learning frameworks for chemical retrosynthesis: pubs.rsc.org/en/content/a...

14.01.2025 18:49 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Foundation Models at Work: Fine-Tuning for Fairness in Algorithmic Hiring Foundation models require fine-tuning to ensure their generative outputs align with intended results for specific tasks. Automating this fine-tuning process is challenging, as it typically needs human...

๐—ฆ๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐—ณ๐—ถ๐—ฐ ๐—Ÿ๐—Ÿ๐— ๐˜€ ๐Ÿง :

โžก๏ธ Foundation Models at Work: Fine-Tuning for Fairness in Algorithmic Hiring: arxiv.org/abs/2501.07324

โžก๏ธ Improved Scholarly Document Comprehension for Large Language Models: aclanthology.org/2024.sdp-1.28/

14.01.2025 18:49 โ€” ๐Ÿ‘ 2    ๐Ÿ” 2    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

๐——๐—ฎ๐˜๐—ฎ-๐——๐—ฟ๐—ถ๐˜ƒ๐—ฒ๐—ป ๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป โ›ฐ๏ธ:

โžก๏ธ Surrogate-Based Optimization: arxiv.org/abs/2412.13948

โžก๏ธ Hierarchical planning-scheduling-control: arxiv.org/abs/2310.07870

โžก๏ธ Discrete and mixed-variable experimental design with surrogate-based approach: pubs.rsc.org/en/Content/A...

14.01.2025 18:49 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
The automated discovery of kinetic rate models โ€“ methodological frameworks The industrialization of catalytic processes requires reliable kinetic models for their design, optimization and control. Mechanistic models require significant domain knowledge, while data-driven and...

๐—”๐˜‚๐˜๐—ผ๐—บ๐—ฎ๐˜๐—ฒ๐—ฑ ๐— ๐—ผ๐—ฑ๐—ฒ๐—น ๐—–๐—ผ๐—ป๐˜€๐˜๐—ฟ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐—ฎ๐—ป๐—ฑ ๐——๐—ถ๐˜€๐—ฐ๐—ผ๐˜ƒ๐—ฒ๐—ฟ๐˜† ๐Ÿ”ฌ:

โžก๏ธ The automated discovery of kinetic rate models: pubs.rsc.org/en/content/a...

โžก๏ธ Simplest Mechanism Builder Algorithm (SiMBA): arxiv.org/abs/2410.21205

14.01.2025 18:48 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Machine learning-assisted discovery of flow reactor designs - Nature Chemical Engineering Identifying the optimal geometry of continuous flow reactors is a major challenge due to the large available parameter design space. Here the authors combine a machine learning-assisted methodology wi...

#๐—•๐—ฎ๐˜†๐—ฒ๐˜€๐—ถ๐—ฎ๐—ป๐—ข๐—ฝ๐˜๐—ถ๐—บ๐—ถ๐˜‡๐—ฎ๐˜๐—ถ๐—ผ๐—ป & ๐—›๐˜‚๐—บ๐—ฎ๐—ป-๐—ถ๐—ป-๐˜๐—ต๐—ฒ-๐—น๐—ผ๐—ผ๐—ฝ ๐Ÿ“ˆ

โžก๏ธ Bayesian optimization for discovery of reactor designs: www.nature.com/articles/s44...

โžก๏ธ Human-algorithm collaborative Bayesian optimization: arxiv.org/abs/2404.10949

14.01.2025 18:48 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Control-Informed Reinforcement Learning for Chemical Processes This work proposes a control-informed reinforcement learning (CIRL) framework that integrates proportional-integral-derivative (PID) control components into the architecture of deep reinforcement lear...

#๐—ฅ๐—ฒ๐—ถ๐—ป๐—ณ๐—ผ๐—ฟ๐—ฐ๐—ฒ๐—บ๐—ฒ๐—ป๐˜๐—Ÿ๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ด ๐Ÿค–:

โžก๏ธ Control-Informed Reinforcement Learning: arxiv.org/abs/2408.13566

โžก๏ธ Graph Neural Networks and Multi-Agent Reinforcement Learning: arxiv.org/abs/2410.18631

โžก๏ธ PC-Gym: Benchmark Environments for Process Control Problems: arxiv.org/html/2410.22...

14.01.2025 18:47 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Hello Bluesky! Our group @imperialchemeng.bsky.social researches #AI & #ChemicalEngineering. if you are interested, some of our 2024 research is below on:

#ReinforcementLearning ๐Ÿค–
#BayesianOptimization ๐Ÿ“ˆ
#AutomatedModelDiscovery ๐Ÿ”ฌ
#DataDrivenOptimization โ›ฐ๏ธ
#ScientificLLMs ๐Ÿง 
#ReactionPlanning โš›๏ธ

14.01.2025 18:47 โ€” ๐Ÿ‘ 0    ๐Ÿ” 3    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Hello, Bluesky community! ๏ธโ€๐Ÿ”ฅ

Iโ€™m a researcher in optimization and machine learning applied to chemical engineering.

Excited to connect, share ideas and science in this fresh space! ๐Ÿš€

30.11.2024 17:32 โ€” ๐Ÿ‘ 5    ๐Ÿ” 3    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

@antonioe89 is following 19 prominent accounts