Kale-ab Tessera's Avatar

Kale-ab Tessera

@kale-ab.bsky.social

ML PhD Student @ Uni. of Edinburgh, working on Multi-Agent Problems. | Organiser @deeplearningindaba.bsky.socialโ€ฌ @rl-agents-rg.bsky.socialโ€ฌ | ๐Ÿ‡ช๐Ÿ‡น๐Ÿ‡ฟ๐Ÿ‡ฆ kaleabtessera.com

2,295 Followers  |  240 Following  |  50 Posts  |  Joined: 20.10.2024  |  2.2794

Latest posts by kale-ab.bsky.social on Bluesky

Post image

Reading group today at 2pm BST!

We are starting our NeurIPS series with Sable and Oryx, sequence models for scalable multi-agent coordination from the RL Research Team at InstaDeep. ๐Ÿš€

Papers:
- Sable: bit.ly/3Lme7jH
- Oryx: bit.ly/47GJb4T

Meeting:
- bit.ly/3JoEbtU

06.11.2025 10:43 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
UoE RL Reading Group University of Edinburgh Reinforcement Learning Reading Group

๐Ÿ“ข RL reading group Thursday @ 16:00 BST ๐Ÿ“ข

Speaker: Alex Lewandowski

Title: The World Is Bigger: A Computationally-Embedded Perspective on the Big World Hypothesis ๐ŸŒ

Details: edinburgh-rl.github.io/reading-group

03.09.2025 11:32 โ€” ๐Ÿ‘ 6    ๐Ÿ” 3    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Refreshing to see posts like this compared to "we have 15 papers accepted at X" ๐Ÿ™Œ

19.08.2025 11:44 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

None of our impactful papers have had an easy path through traditional venues.
Most cited paper? Rejected four times.
Most impactful paper? Poster at a conference.
But none of it matters because arxiv makes everything work

18.08.2025 23:40 โ€” ๐Ÿ‘ 109    ๐Ÿ” 6    ๐Ÿ’ฌ 6    ๐Ÿ“Œ 4
Post image Post image Post image Post image

Great first couple of days at DLI @deeplearningindaba.bsky.social in Kigali ๐Ÿ‡ท๐Ÿ‡ผ, some highlights include amazing talks talks by @verenarieser.bsky.social and Max Welling, great pracs and tuts, and of course the opening party ( before the rain ๐Ÿ˜ข) ๐ŸŽ‰ #DLI2025

18.08.2025 17:02 โ€” ๐Ÿ‘ 4    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image Post image Post image

Weโ€™re excited to unveil the first #DLI2025 lineup of tutorials and practicals:

โœจ Machine Learning Foundations
โœจ Generative Models & LLMs for African languages

All tutorial content will also be available online after the Indaba. Donโ€™t miss out, subscribe here ๐Ÿ‘‰ lnkd.in/eCgXRqsV

17.08.2025 15:32 โ€” ๐Ÿ‘ 2    ๐Ÿ” 3    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

๐Ÿ™Œ๐ŸŽ‰

03.08.2025 20:14 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

๐Ÿ‡จ๐Ÿ‡ฆ Heading to @rl-conference.bsky.social next week to present HyperMARL (@cocomarl-workshop.bsky.social) and Remember Markov (Finding The Frame Workshop).

If you are around, hmu, happy to chat about Multi-Agent Systems (MARL, agentic systems), open-endedness, environments, or anything related! ๐ŸŽ‰

03.08.2025 10:41 โ€” ๐Ÿ‘ 9    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 2
Post image

We are thrilled to announce our next keynote speaker
@wellingmax.bsky.social, Professor at the University of Amsterdam, Visiting Professor at Caltech and CTO & Co-Founder of CuspAI.
Catch his talk โ€œHow AI could transform the sciencesโ€ on August 18 at 4:30 PM GMT+2.
#DLI2025

30.07.2025 10:52 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
UoE RL Reading Group University of Edinburgh Reinforcement Learning Reading Group

RL reading group TODAY @ 15:00 BST ๐Ÿ”ฅ

Speaker: Cam Allen (Postdoc, UC Berkeley)

Title: The Agent Must Choose the Problem Model

Details: edinburgh-rl.github.io/reading-group

24.07.2025 05:39 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Always nice to see when simpler methods + good evaluations > more complicated ones. ๐Ÿ‘Œ

23.07.2025 09:47 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Reading group is back for those interested in RL/MARL/agents/open-endedness and alike... First session today at 3pm BST, @mattieml.bsky.social is presenting the Simplifying TD learning/PQN paper. ๐ŸŽ‰ Meeting link: bit.ly/4lfdaGR Sign up: bit.ly/40xNQDR

10.07.2025 10:49 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Hello world! This is the RL & Agents Reading Group

We organise regular meetings to discuss recent papers in Reinforcement Learning (RL), Multi-Agent RL and related areas (open-ended learning, LLM agents, robotics, etc).

Meetings take place online and are open to everyone ๐Ÿ˜Š

10.07.2025 10:29 โ€” ๐Ÿ‘ 37    ๐Ÿ” 12    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 3

This has happened to me too many times ๐Ÿคฆโ€โ™‚๏ธ Also doesn't help that Jax and PyTorch use different default initialisations for dense layers.

24.06.2025 07:19 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Well done & well deserved!! ๐ŸŽ‰๐ŸŽ‰ It has been awesome to see this project evolve from the early days.

23.06.2025 06:45 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
Edinburgh RL Reading Group Please add your details so that you can remain on the mailing list for the RL Reading Group.

The Edinburgh one will be back and running soon. We are just updating the website and other things. There is this form for people interested - forms.gle/DAbkpN9b4cUt...

05.06.2025 15:40 โ€” ๐Ÿ‘ 3    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 1

Forgot to also add โšก quickstart link for people who like to experiment on notebooks: github.com/KaleabTesser...

28.05.2025 09:37 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Thanks for checking it out! ๐Ÿ‘ Good point, there might be an interesting link between MoEs and hypernets. We used hypernets since they're simpler (no need to pick or combine experts), and maximally expressive (gen weights directly).

Lol yes, will had a .gitignore, missed it when copying things over.

28.05.2025 07:40 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
HyperMARL: Adaptive Hypernetworks for Multi-Agent RL Adaptability to specialised or homogeneous behaviours is critical in cooperative multi-agent reinforcement learning (MARL). Parameter sharing (PS) techniques, common for efficient adaptation, often li...

๐ŸŽฏ TL;DR: HyperMARL is a versatile approach for adaptive MARL -- no changes to the RL objective, preset diversity, or seq. updates needed. See paper & code below!

Work with Arrasy Rahman, Amos Storkey & Stefano Albrecht.

๐Ÿ“œ: arxiv.org/abs/2412.04233
๐Ÿ‘ฉโ€๐Ÿ’ป: github.com/KaleabTessera/HyperMARL

27.05.2025 11:07 โ€” ๐Ÿ‘ 3    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

โš ๏ธ Limitations (+opportunity): HyperMARL uses vanilla hypernets, which can inc. param. count esp. MLP hypernets. In RL/MARL this matters less (actor-critic nets are small), and params grow ~const with #agents, so scaling remains strong. Future work could explore chunked hypernets.

27.05.2025 11:07 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

๐Ÿ”Ž We also do ablations and see the importance of the decoupling and the simple initialisation scheme we follow.

27.05.2025 11:07 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

๐Ÿ“Š We validate HyperMARL across various diverse envs (18 settings; up to 20 agents) and find that it achieves competitive mean episode returns compared to NoPS, FuPS, and modern diversity-focused methods -- without using diversity losses, preset diversity levels or seq. updates.

27.05.2025 11:07 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image Post image

๐Ÿ’กTo address the coupling problem, we propose ๐‡๐ฒ๐ฉ๐ž๐ซ๐Œ๐€๐‘๐‹: a method that explicitly ๐๐ž๐œ๐จ๐ฎ๐ฉ๐ฅ๐ž๐ฌ obs- and agent-conditioned gradients with hypernetworks. This means obs grad noise is avg. per agent (Zแตข) before applying agent-cond. grads (Jแตข) -- unlike FuPS, which entangles both.

27.05.2025 11:07 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Specialisation matrix game.

Specialisation matrix game.

Performance and gradient interference plots.

Performance and gradient interference plots.

๐Ÿ”ฌ We isolate FuPSโ€™s failure in matrix games: shared policies struggle when agents need to act differently. Inter-agent gradient interference is at play -- especially when obs and agent IDs are ๐œ๐จ๐ฎ๐ฉ๐ฅ๐ž๐. Surprisingly, using only IDs (no obs) performed better and reduced interference.

27.05.2025 11:07 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

โ“Existing methods add a diversity loss, use sequential updates or require knowing the optimal task diversity level beforehand. These can be hard to tune or inefficient. We ask: can shared policies adapt without any of the above?

27.05.2025 11:07 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

โš–๏ธ ๐–๐ก๐š๐ญโ€™๐ฌ ๐ญ๐ก๐ž ๐ข๐ฌ๐ฌ๐ฎ๐ž? In MARL, optimal performance requires representing the right behaviours. Separate networks per agent (NoPS) enable agent specialisation but is costly & sample-inefficient; shared networks (FuPS) are efficient but lack agent diversity/specialisation.

27.05.2025 11:07 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Video thumbnail

๐Ÿ“œ๐Ÿค– Can a shared multi-agent RL policy support both specialised & homogeneous team behaviours -- without changing the learning objective, requiring preset diversity levels or sequential updates? Our preprint โ€œ๐˜๐˜บ๐˜ฑ๐˜ฆ๐˜ณ๐˜”๐˜ˆ๐˜™๐˜“: ๐˜ˆ๐˜ฅ๐˜ข๐˜ฑ๐˜ต๐˜ช๐˜ท๐˜ฆ ๐˜๐˜บ๐˜ฑ๐˜ฆ๐˜ณ๐˜ฏ๐˜ฆ๐˜ต๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ๐˜ด ๐˜ง๐˜ฐ๐˜ณ ๐˜”๐˜ถ๐˜ญ๐˜ต๐˜ช-๐˜ˆ๐˜จ๐˜ฆ๐˜ฏ๐˜ต ๐˜™๐˜“โ€ explores this!

27.05.2025 11:07 โ€” ๐Ÿ‘ 11    ๐Ÿ” 2    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 2

Ah nice, looks like a fun competition!

26.05.2025 20:31 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

For many, the Indaba was their first exposure to ML/AI, and this helps give more people that opportunity. Please donate if you can: gofund.me/61b012e4

24.05.2025 07:15 โ€” ๐Ÿ‘ 4    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

๐Ÿช˜The 2024 Impact Report is here!
Our last Indabaโ€™s theme, Xam Xamlรฉ (Wolof for "To Gather Knowledge and Share It"), beautifully reflected our mission: Empowering and educating through African AI. Read our report ๐Ÿ”—https://deeplearningindaba.com/blog/2025/04/xam-xamle-our-latest-indaba-impact-report/

28.04.2025 14:54 โ€” ๐Ÿ‘ 3    ๐Ÿ” 2    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1

@kale-ab is following 20 prominent accounts