Extreme-Value Signal Detection Theory for RecognitionMemory: The Parametric Road Not Taken
Signal Detection Theory has long served as a cornerstone of psychological research, particularly in recognition memory. Yet its conventional application hinges almost exclusively on the Gaussianโฆ
Honey, we fixed Signal Detection Theory (SDT)! In this preprint, Constantin Meyer-Grant, David Kellen, Sam Harding, and I critically evaluate the (unequal-variance) Gaussian SDT model in recognition memory and pursue the Gumbel-min model as a principled alternative: doi.org/10.31234/osf...
๐งต
27.04.2025 14:46 โ ๐ 78 ๐ 27 ๐ฌ 4 ๐ 1
Reference Point-Dependent Reinforcement Learning in Humans and Rats
Previous studies indicate that rewards and punishments in reinforcement learning are encoded in a relative manner. Reference point-dependence, a valuation bias shared by eminent adaptation level and p...
๐จ New study alert! ๐จ
Ever wondered if rats and humans learn in the same way? ๐ญ๐งโ๐ฌ
We tested this โ and the answer is yes, at least when it comes to how we value rewards in context.
(with @shaunaparkes.bsky.social Lachlan Ferguson, Magdalena Soukupova)
๐งตThread ๐
1/
www.biorxiv.org/content/10.1...
14.04.2025 08:48 โ ๐ 35 ๐ 18 ๐ฌ 1 ๐ 1
Honest people donโt lie. Or do they? Liars arenโt honest. Or are they?
One puzzling conundrum in contemporary politics is that politicians who seem to be estranged from facts and evidence are nonetheless considered honest by their followers.
1/n
10.04.2025 10:47 โ ๐ 250 ๐ 92 ๐ฌ 14 ๐ 35
OSF
Again, a big thank you to @ranimo.bsky.social and Ray Dolan for guiding this work!
In the full paper, we go in depth into these results, and propose several mechanisms of how some of these biases can emerge, escalate and progressively bias our beliefs.
osf.io/preprints/psyaโฆ
13/13
07.04.2025 16:54 โ ๐ 2 ๐ 0 ๐ฌ 0 ๐ 0
However, you may still under-correct these news, perceive neutral sources as biased in favor of vaccines, and, when receiving factual information, revise your opinion of the source rather than your vaccine beliefs. This will make you more vaccine-skeptical over time!
12/13
07.04.2025 16:54 โ ๐ 2 ๐ 0 ๐ฌ 1 ๐ 0
So what does this mean in the real world? Imagine you frequently read anti-vax news. You know itโs biased. You think youโre reading critically.
11/13
07.04.2025 16:54 โ ๐ 0 ๐ 0 ๐ฌ 1 ๐ 0
We found that biases systematically distorts beliefs, even when:
โ๏ธBiases are non-ideological, simple and additive
โ๏ธParticipants are highly motivated to learn
โ๏ธThey have clear chances to detect/correct biases
Bias silently takes holdโeven when we're trying to resist it!
10/13
07.04.2025 16:54 โ ๐ 1 ๐ 1 ๐ฌ 1 ๐ 0
3๏ธโฃThird finding: People care for learning about the sources over getting money
Participants directed too many cognitive resources to learn how sources are biased, but this hurt their ability to make good bandit choices. Sometimes attempts to correct for biases may backfire!
9/13
07.04.2025 16:54 โ ๐ 2 ๐ 0 ๐ฌ 1 ๐ 0
2๏ธโฃSecond finding: people misperceive neutral sources as being biased.
After interacting with a biased source (e.g., favorable), a neutral source was perceived as biased in the opposite direction (e.g., unfavorable). And this only emerged after the ground truth was withheld.
8/13
07.04.2025 16:54 โ ๐ 0 ๐ 0 ๐ฌ 1 ๐ 0
So, what did we find?
1๏ธโฃFirst big finding: People don't fully correct for bias.
Even when theyโve had ample opportunity to learn that a source is biased, they still under-debiased. Participants became biased in the same directions as the sources that informed them!
7/13
07.04.2025 16:54 โ ๐ 0 ๐ 0 ๐ฌ 1 ๐ 0
In phase 2, these feedback sources can be treated like our "biased weight scale".
By adding/subtracting 3ยฃ to estimates of unfavorable/favorable sources respectively one can fully correct for their reports and learn the true value of paintings!
6/13
07.04.2025 16:54 โ ๐ 0 ๐ 0 ๐ฌ 1 ๐ 0
The task had two phases:
๐ขPhase 1: true outcomes and source feedback were shown, so that could learn about source biases.
๐ Phase 2: only source feedback was shown (no true outcomes), so they had to infer the values of paintings.
We also asked them to classify the bias of each source.
5/13
07.04.2025 16:54 โ ๐ 0 ๐ 0 ๐ฌ 1 ๐ 0
Instead, they relied on external sources that estimated the selling price of selected paintings. But these sources could give biased estimates:
โFavorable sources overestimated true selling prices by ~3$.
โซNeutral sources (unbiased) โUnfavorable sources underestimated by ~3$
5/13
07.04.2025 16:54 โ ๐ 0 ๐ 0 ๐ฌ 1 ๐ 0
We tested this using a multi-armed bandit reinforcement learning game where participants played art dealers selling painting copies (=bandits).๐ผ๏ธ Paintings varied in price.
The goal: to choose more expensive paintings.
The challenge: they didnโt get to see the TRUE prices
4/13
07.04.2025 16:54 โ ๐ 1 ๐ 0 ๐ฌ 1 ๐ 0
Even more interesting, bias is theoretically correctable!
Imagine a scale that always adds 5kg. If the scale reads 75kg, you can infer your true weight is 70 kg. So, in principle, if we know an info-source is biased, we should be able to adjust for it. Right?
Not quiteโฆ
3/13
07.04.2025 16:54 โ ๐ 1 ๐ 0 ๐ฌ 1 ๐ 0
First, bias is not noise.
โขNoise is like a coin flipโrandom and directionless.
โขBias is systematicโit consistently skews things in a certain direction.
And here's the kicker: while noise cancels out over time, bias can accumulate. 2/13
07.04.2025 16:54 โ ๐ 0 ๐ 0 ๐ฌ 1 ๐ 0
OSF
๐จ New preprint alert! ๐จ
w/ @ranimo.bsky.social ๐ osf.io/preprints/psyaโฆ
From partisan news to algorithmically curated content, we constantly receive biased misinformation. With biased input, can our beliefs be accurate?
Turns out, biased misinformation distorts our beliefs! ๐๐งต 1/13
07.04.2025 16:54 โ ๐ 5 ๐ 5 ๐ฌ 1 ๐ 1
When populist regimes target scientific institutions - as is happening in the US today - it is not because their core constituency is anti-science but exactly because even they respect the authority of science.
Science is a dangerous counter-power for the populist leaders.
(2/4)
16.03.2025 11:36 โ ๐ 25 ๐ 6 ๐ฌ 1 ๐ 0
We know that economic anxiety & conspiracy beliefs are related. Often this is used to argue that it is key to fix economic conditions to avoid widespread conspiracy beliefs.
But a new study shows that causality runs the other way. The conspiracy beliefs drive the anxiety: doi.org/10.1111/pops...
13.03.2025 10:21 โ ๐ 327 ๐ 107 ๐ฌ 13 ๐ 17
Last year, we published a paper showing that AI models can "debunk" conspiracy theories via personalized conversations. That paper raised a major question: WHY are the human<>AI convos so effective? In a new working paper, we have some answers.
TLDR: facts
osf.io/preprints/ps...
18.02.2025 16:30 โ ๐ 318 ๐ 106 ๐ฌ 19 ๐ 30
Researcher - @arc_mpib; in between in Paris @InstitutNicod
Whatโs going on with those adolescents? What is that โRisk-takingโ everyone keeps talking about? And how do people adapt to poverty?
Computational cognitive scientist
Assoc Professor at Hebrew University
sites.google.com/site/eldareran
London Judgment & Decision Making Group holds seminars on Wednesdays during term time at University College London. For more details, see surl.li/mqtofs
Communication scholar and media psychologist. Exploring the abyss of digital communications and how to foster democratic resilience. || Associate Professor Digital Democracy Centre University of Southern Denmark
Cultural evolution of the mind | Assistant Professor @ University of Chicago, Booth School of Business & Faculty Affiliate of UChicago Data Science Institute | He/his | https://joshuaconradjackson.com
Postdoc in Uchida Lab, Harvard (dopamine, learning, circuit computation) | PhD in Giocomo lab, Stanford (grid cells, path integration, navigation) | NIH NIDA K99/R00 | Bridging theory and biology of animal learning and decision making
Neuroscientist. Professor at Harvard University.
Studies the neural mechanisms underlying decision-making and learning. Dopamine.
Experimental & theoretical neuroscientists collaborating to understand brainwide circuits for complex behavior. internationalbrainlab.com
Non Profit Organisation
We discuss Ideas about Intelligence
Upcoming events :
https://www.algopreneurship.org/ : London
Hi ๐ I'm a postdoc in the #Neuroimmunology and #Imaging group at the @dzne.science Bonn ๐งช๐ฌ Passionate about #ComputationalNeuroscience ๐ง ๐ป and #NeuralModeling ๐งฎ
๐ fabriziomusacchio.com
๐จโ๐ป github.com/FabrizioMusacchio
๐ sigmoid.social/@pixeltracker
An account for experimental philosophy - an interdisciplinary field at the intersection of philosophy and psychology https://en.m.wikipedia.org/wiki/Experimental_philosophy#:~:text=Experimental%20philosophy%20is%20an%20emerging,inform%20research%20on%20phi
Doctoral student & Normalien in cognitive neuroscience at ENS Paris-PSL University, Human Reinforcement Learning Team | Interested in photography & decision-making
Finally arrived on Bluesky.
Neuroscience PhD student at Tel Aviv University. Social neuroscience, trust/belief, misinformation, language and communication. Film enthusiast. ๐ณ๏ธโ๐
https://gabrielbrauncog.github.io/
sensorimotor computations, beta bursts, laminar MEG, infant development ๐ง ๐ฆพ๐ฅ๐ฐ๐ถ
PI: James Bonaiuto
www.danclab.com
postdoc @mpc-comppsych.bsky.social | {learning, exploration, decision making} x depression | previously phd columbia psychology @zuckermanbrain.bsky.social
yanivabir.com
Assistant Prof at UAH | Former NSF SBE postdoc at Vanderbilt | PhD in clinical psych from Emory | studying intellectual humility, polarization, and misinformation
shaunambowes.wixsite.com/website
Cognitive computational (neuro-)science PhD student at Uni Tรผbingen ๐ง ๐ค she/her
Cognitive Scientist interested in Human Decision-Making.
Researcher at CNRS; Professor at Paris School of Economics;
Assistant Professor at University of Geneva
https://sites.google.com/site/maellebreton/home
Melbourne based PhD candidate interested in all things social reasoning, cognition, modelling, and philosophy of science ๐ค
https://manikyaalister.github.io/