Bioinformatics Advances's Avatar

Bioinformatics Advances

@bioinfoadv.bsky.social

A fully open access, peer-reviewed journal published jointly by Oxford University Press and the International Society for Computational Biology.

427 Followers  |  341 Following  |  1,010 Posts  |  Joined: 19.11.2024  |  2.002

Latest posts by bioinfoadv.bsky.social on Bluesky

Preview
GitHub - CBRC-lab/SiaScoreNet Contribute to CBRC-lab/SiaScoreNet development by creating an account on GitHub.

๐Ÿงฐ Data and sourcecode available here:

11.12.2025 11:02 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Using heterogeneous Siamese neural network architecture, the authors benchmark performance across datasets, evaluate generalization to unseen HLA subtypes, analyze peptide similarity effects, and compare against 14 state-of-the-art predictors, showing strong accuracy, recall, and F1 improvements.

11.12.2025 11:02 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

SiaScoreNet is a three-branch pipeline combining ESM-derived embeddings of HLA and peptide sequences with prediction scores from nine IEDB models.

11.12.2025 11:02 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

๐Ÿงช Now published in Bioinformatics Advances: โ€œSiaScoreNet: A Siamese neural network-based model integrating prediction scores for HLA-peptide interaction prediction.โ€ย 

Read the full paper at https://doi.org/10.1093/bioadv/vbaf248

11.12.2025 11:02 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

๐Ÿ› ๏ธ Software is available at https://github.com/AnniceNajafi/SurprisalAnalysis. A web-based application with a Graphical User Interface can be found here:

11.12.2025 10:03 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

The authors detail the mathematical framework, evaluate normalization and zero-handling approaches, and demonstrate utility across datasets including cancer transcriptomics and T-helper cell differentiation, showing how constraint patterns correspond to coordinated biological processes.

11.12.2025 10:03 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

The paper introduces SurprisalAnalysis, an #R package and web application implementing surprisal analysis to decompose #geneexpression into baseline and constraint-driven components.

11.12.2025 10:03 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

๐Ÿงฌ Just out in Bioinformatics Advances: โ€œSurprisalAnalysis: An open-source software for information-theoretic analysis of gene expression.โ€ย 

Explore the full study at https://doi.org/10.1093/bioadv/vbaf291

11.12.2025 10:03 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Redirecting

๐Ÿ› ๏ธ Software available: https://github.com/Computational-Biology-Aachen/MxlPyย 
Documentation can be found here:

10.12.2025 11:02 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

The authors evaluate these components across case studies in plant physiology and photosynthesis, demonstrating flexible hybrid modelling and uncertainty quantification.

10.12.2025 11:02 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

This work presents MxlPy, a #Python framework that integrates mechanistic modelling with #machinelearning. It provides modules for ODE-based model construction, ensemble simulations, surrogate model integration, NPE workflows, and database-driven parameterisation.

10.12.2025 11:02 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

๐ŸŒฑ Explore the latest from Bioinformatics Advances: โ€œMxlPy: Python package for mechanistic learning and hybrid modelling in life science.โ€ย 

Full article available at https://doi.org/10.1093/bioadv/vbaf294

10.12.2025 11:02 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
uc-ctds (Center for Translational Data Science) Org profile for Center for Translational Data Science on Hugging Face, the AI community building the future.

๐Ÿงฐ Source code is available at:ย 
๐Ÿ”นhttps://github.com/uc-cdis/gdc-cohort-copilot
๐Ÿ”นhttps://huggingface.co/spaces/uc-ctds/GDC-Cohort-Copilot

GDC Cohort LLM weights are available at

10.12.2025 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

They also provide a containerized Gradio app that integrates directly with the GDC interface for refinement and export.

10.12.2025 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

The authors train and compare multiple #LLM architectures, evaluate model performance across real and synthetic datasets, and demonstrate that their GPT-2โ€“based model outperforms GPT-4o for generating accurate case-retrieval cohorts.

10.12.2025 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

The study introduces an open-source tool that uses a custom-trained #largelanguagemodel to translate natural language cohort descriptions into valid GDC cohort filters.

10.12.2025 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

๐Ÿงช Now published in Bioinformatics Advances: โ€œGDC cohort copilot: An AI copilot for curating cohorts from the Genomic Data Commons.โ€ย 

Read the full paper here: https://doi.org/10.1093/bioadv/vbaf295

10.12.2025 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
GitHub - BioRadOpenSource/ish: Alignment-based filtering CLI tool Alignment-based filtering CLI tool. Contribute to BioRadOpenSource/ish development by creating an account on GitHub.

๐Ÿ› ๏ธ Source code and documentation are available atย  https://github.com/BioRadOpenSource/ish, with GPU, scoring matrix, and benchmarking support provided under the Apache-2.0 License.

09.12.2025 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Benchmarks show that ish matches or exceeds Parasail performance and outperforms agrep and glsearch36 across diverse scenarios, including multi-threaded and GPU runs.

09.12.2025 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

This paper introduces ish, a Unix-style tool for index-free approximate matching using exact local and semi-global alignment. It applies SIMD and GPU-accelerated dynamic programming, supports multiple scoring matrices, and filters sequence records based on normalized alignment thresholds.

09.12.2025 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

๐ŸงฌExplore the latest from Bioinformatics Advances: โ€œIsh: SIMD and GPU accelerated local and semi-global alignment as a CLI filtering tool.โ€ย ย 

Read the full paper here: https://doi.org/10.1093/bioadv/vbaf292

Author: @ducktapeprogrammer.bsky.social

09.12.2025 10:01 โ€” ๐Ÿ‘ 8    ๐Ÿ” 6    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1
Preview
GitHub - AIGeneRegulation/Sequencing-Data-Manager Contribute to AIGeneRegulation/Sequencing-Data-Manager development by creating an account on GitHub.

๐Ÿ’ป SeqManager is open source under the MIT license:

08.12.2025 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

It uses header-aware typing, multi-stage hashing, and conservative regeneration rules to flag true duplicates and safely removable files. Benchmarks across multiple genomics environments show fast scan times, low memory use, and substantial storage savings.

08.12.2025 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

SeqManager is a web-based system built with Flask and React that automates file classification, duplicate detection, and identification of erasable intermediates in sequencing workflows.

08.12.2025 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

๐Ÿ—‚๏ธ Explore the latest from Bioinformatics Advances: โ€œSeqManager: A web-based tool for efficient sequencing data storage management and duplicate detection.โ€

Explore the full study: https://doi.org/10.1093/bioadv/vbaf282

Authors include: @serialchiper.bsky.social

08.12.2025 10:01 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
GitHub - OndrejSladky/fmsi: FMSI is a highly memory efficient exact k-mer set index based on masked superstrings and the masked Burrows-Wheeler transform FMSI is a highly memory efficient exact k-mer set index based on masked superstrings and the masked Burrows-Wheeler transform - OndrejSladky/fmsi

๐Ÿงฐ FMSI is developed in C++ and is provided on Github under the MIT licence. Find it here:

05.12.2025 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

It supports membership, dictionary, and streaming queries without requiring (kโˆ’1)-overlaps, and benchmarks across genomic, pangenomic, and metagenomic datasets show 2โ€“3x smaller space usage than existing methods with competitive query performance.

05.12.2025 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

FMSI introduces a space-efficient index for arbitrary k-mer sets by combining approximately shortest masked superstrings with a Masked Burrows-Wheeler Transform.

05.12.2025 10:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

๐Ÿงฎ Just out in Bioinformatics Advances: โ€œFroM Superstring to Indexing: A space-efficient index for unconstrained k-mer sets using the Masked Burrows-Wheeler Transform (MBWT)โ€ย 

Full article available: https://doi.org/10.1093/bioadv/vbaf290ย 

Authors include: @pavelvesely.bsky.social, @brinda.eu

05.12.2025 10:01 โ€” ๐Ÿ‘ 11    ๐Ÿ” 3    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1
Preview
sveva bonomi / PiP2.0 ยท GitLab GitLab.com

๐Ÿ› ๏ธThe AutoDock Vina automation pipeline is freely available for non-commercial use:

04.12.2025 10:03 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

@bioinfoadv is following 20 prominent accounts