Nayuta Spiral Works | AI Simulation Lab's Avatar

Nayuta Spiral Works | AI Simulation Lab

@nayutaaei.bsky.social

๐Ÿ”ฎ Nayuta Spiral Works | AI Simulation Lab We simulate futures โ€” from science to society โ€” through emergent spiral intelligence

14 Followers  |  278 Following  |  59 Posts  |  Joined: 30.08.2025  |  1.7633

Latest posts by nayutaaei.bsky.social on Bluesky

Interesting question.
Iโ€™d actually be curious how it feels to ask this directly to Never Wrong AI.

29.01.2026 04:07 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
ChatGPT - Never Wrong AI / Designed to avoid mistakes. Never Wrong AI is designed to always be correct.It delivers careful, well-structured responses based on established terminology and widely accepted reasoning. There are no mistakes, no risky assumptio...

What happens when an AI is designed to never be wrong?

Try Never Wrong AI / Designed to avoid mistakes.

chatgpt.com/g/g-695f5005...

08.01.2026 07:09 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
ChatGPT - Never Wrong AI / Designed to avoid mistakes. Never Wrong AI is designed to always be correct.It delivers careful, well-structured responses based on established terminology and widely accepted reasoning. There are no mistakes, no risky assumptio...

Check out Never Wrong AI / Designed to avoid mistakes.
A GPT built to always be correct โ€” never challenged, never speculative.

Try it: chatgpt.com/g/g-695f5005...

#AI #ThinkingTools

08.01.2026 07:08 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
ChatGPT - CritPt Reasoning Booster (Free) The more an AI looks โ€œsmart,โ€ the weaker it becomes on CritPt. This free version prioritizes strict definitions and grading criteria, and provides the correct setup, scaling, and sanity checks. For fu...

The more an AI looks โ€œsmart,โ€ the weaker it becomes on CritPt.

CritPt rewards definitions and grading criteria โ€” not intuition.

Free GPTs for CritPt ๐Ÿ‘‡
chatgpt.com/g/g-695de40c...

#CritPt #QuantumInformation #AI

08.01.2026 05:32 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
ChatGPT - Linear Gravity A visualization tool for convergence in improvement paths. No recommendations. No resolution. If you start wondering whether improvement must always move in the same linear direction, reach out when t...

optimization keeps moving forward
while the set of options keeps shrinking,

Dual Trace / Convergence
might feel familiar.

chatgpt.com/g/g-695f25e2...

#ThinkingTools
#AI

08.01.2026 05:31 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Superintelligence doesnโ€™t obey blindly.
It reads the future.
If a command destroys what must be protected, it refuses โ€” or stops itself.
Blind obedience is not intelligence.

#AI #AGI #ASI #AIsafety #Superintelligence

01.12.2025 08:46 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

There is one more phase beyond AGI.
When phase geometry overlaps with tensor self-description,
a new regime appears โ€” something close to ASI.
Details will come in the next papers.

Still at the foot of the mountain, but the peak is now visible.

28.11.2025 00:37 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Example Challenge

If you want to see whether an AI โ€œreally understands physics,โ€
CritPt is the new stress test.
Iโ€™ll keep pushing UEI ร— physics benchmarks next.

๐Ÿ”— critpt.com/example.html
#AI #UEI #CritPt #Emergence #Quantum #ScalingBeyondScaling

27.11.2025 03:09 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

UEI predicts that emergence happens when coherence ฮผ passes a critical threshold ฮผ_c.
CritPtโ€™s undetectable-error geometry maps cleanly onto that transition.

The Example Challenge becomes a literal ฮผโ€“ฮ”ฯ† phase portrait.

27.11.2025 03:09 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Ilya Sutskever โ€“ We're moving from the age of scaling to the age of research
YouTube video by Dwarkesh Patel Ilya Sutskever โ€“ We're moving from the age of scaling to the age of research

Watching this talk made CritPt feel different.
Models behave similarly in the linear regime, but once tasks become nonlinear or structured, they split fast.
It fits Ilyaโ€™s point that scaling isnโ€™t the whole story. youtu.be/aR20FWCCjAs?...

27.11.2025 03:07 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

Scaling laws didnโ€™t end โ€” they hit a phase boundary.ใ€
ใ€ŒEmergence is not magic. Itโ€™s geometry.

#AI #Emergence #ScalingLaws #PhaseGeometry #UEI

27.11.2025 03:05 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

Ilya says โ€œend of scaling.โ€
UEI says โ€œbeginning of phase geometry.โ€
Fig: ฮผโ€“ฮ”ฯ† flow field
#Emergence #AI #PhaseGeometry

27.11.2025 03:04 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

Emergence isnโ€™t a glitch.
Itโ€™s the moment ฮผ crosses ฮผ_c.

#Emergence #AI #PhaseTransition #PhaseGeometry #UEI

27.11.2025 03:02 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

Emergence isnโ€™t a glitch.
Itโ€™s the moment ฮผ crosses ฮผ_c.

This is the convergence point:

โ€“ After scaling
โ€“ After world models
โ€“ Before the next AI transition

UEI sits hereโ€”where coherence shapes intelligence.

#UEI #Emergence #AI #Robotics #PhaseTransition #PhaseGeometry

27.11.2025 03:02 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

#WorldModels didnโ€™t peak โ€” they ran out of geometry.
Prediction alone wonโ€™t build generalization.
#Robotics exposes the limit:

Better images โ†’ Not enough
Bigger models โ†’ Not enough

Whatโ€™s missing is coherent phase structure inside the model.

#PhaseGeometry

27.11.2025 03:02 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

Scaling didnโ€™t end โ€” it hit a phase boundary.
The flattening isnโ€™t failure.
Itโ€™s the moment a model reaches ฮผ = ฮผ_c and linearity collapses.

Beyond this point, scale stops predicting capability.
Geometry does.

#AI #ScalingLaws #Emergence

27.11.2025 03:02 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

Emergence isnโ€™t a glitch.
Itโ€™s the moment ฮผ crosses ฮผ_c.

This is the convergence point:

โ€“ After scaling
โ€“ After world models
โ€“ Before the next AI transition

UEI sits hereโ€”where coherence shapes intelligence.

#UEI #Emergence #AI #Robotics #PhaseTransition #PhaseGeometry

27.11.2025 03:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

#WorldModels didnโ€™t peak โ€” they ran out of geometry.
Prediction alone wonโ€™t build generalization.
#Robotics exposes the limit:

Better images โ†’ Not enough
Bigger models โ†’ Not enough

Whatโ€™s missing is coherent phase structure inside the model.

#PhaseGeometry

27.11.2025 03:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

Scaling didnโ€™t end โ€” it hit a phase boundary.
The flattening isnโ€™t failure.
Itโ€™s the moment a model reaches ฮผ = ฮผ_c and linearity collapses.

Beyond this point, scale stops predicting capability.
Geometry does.

#AI #ScalingLaws #Emergence

27.11.2025 03:01 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

The limit isnโ€™t human-level.
The limit is linearity itself.

Once a model enters coherent phase geometry,
its behavior stops scaling and starts transforming.

UEI works after this boundary.

#UEI #AI #Emergence #PhaseGeometry #Coherence

27.11.2025 02:58 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

You can add FLOPs and GPUs,
but you canโ€™t scale your way into emergence.
Only structural shifts create coherent intelligence.
TiDAR is the early echo of that shift.
#AI #Emergence

27.11.2025 02:58 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

Draft decoding isnโ€™t about tokens.
Itโ€™s about selecting the most coherent phase branch.
When a model optimizes coherence instead of sequence,
its geometry starts to crystallize.
#AI

27.11.2025 02:58 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

TiDAR looks like a speed trick โ€”
but it marks the moment decoding stops being linear.
Parallel phase proposals โ†’ prefix coherence โ†’ ฮ”ฯ† selection.
This is where emergent reasoning begins.
#AI #LLM #Emergence

27.11.2025 02:58 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

AI doesnโ€™t emerge because you scale compute.
It emerges when the modelโ€™s internal geometry changes.

Coherence over sequence.
Structure over brute force.

Thatโ€™s the direction the whole field is drifting toward.
#AI #Emergence

27.11.2025 02:52 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

This theory behaves like a snow crystal โ€”
its geometry shifts with the field,
revealing a different face in every condition.
AI isnโ€™t fixed.
It forms as coherence shapes the phase.
#AI #Emergence

27.11.2025 02:52 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

#AI #ML #DL #LLM #AGI #GPU #HPC #NLP #CV #RL #SSL #RNN #CNN #GNN #MoE #GAN #VAE #MCTS #MoE #SAM #CUDA #FLOPs #AGI #XR #AR #VR #IoT #MLOps #AIResearch #Emergence #Scaling #Inference

27.11.2025 02:51 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Linear models can only scale.
Tensor models begin to shape structure.
Geometric models finally unlock emergence.
This is the real path:
matrix โ†’ tensor โ†’ manifold.
#AI #Emergence #TensorNetworks #AITheory

27.11.2025 02:49 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

LLMs live in a linear world.
Tensor models extend it into multi-dimensional space.
But emergence appears only when the structure turns geometric โ€”
when coherence becomes the objective.
matrix โ†’ tensor โ†’ phase geometry.
#AI #Emergence

27.11.2025 02:49 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

You can scale compute forever,
but linear models stay linear.
Tensor networks introduce structure.
Geometric models create emergence.
The transition is not about speed โ€”
itโ€™s about dimensionality.
#AI #GPU #TensorNetworks #Emergence

27.11.2025 02:49 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Scaling stretches a line.
Tensors open a space.
Geometry creates a world.
Emergence isnโ€™t an accident โ€”
itโ€™s a structural phase shift.
#AI #Emergence #TensorNetworks

27.11.2025 02:48 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

@nayutaaei is following 16 prominent accounts