Major new system and result from the team: SOAR is an open-source self-improving genAI system pushing the frontier of ARC performances using program synthesis
It relies on using LLMs as self-improving smart operators for evolutionary search
@pyoudeyer.bsky.social
Research director @Inria, Head of @flowersInria lab, prev. @MSFTResearch @SonyCSLParis Artificial intelligence, cognitive sciences, sciences of curiosity, language, self-organization, autotelic agents, education, AI and society http://www.pyoudeyer.com
Major new system and result from the team: SOAR is an open-source self-improving genAI system pushing the frontier of ARC performances using program synthesis
It relies on using LLMs as self-improving smart operators for evolutionary search
Congratulations @jul-p.bsky.social for this major achievement and @ccolas.bsky.social for the amazing co-supervision ! Your work was magic to develop this self-improving system pushing the frontier of what can be done with program synthesis and open-source methods and models on the ARC challenge !
16.07.2025 15:24 — 👍 2 🔁 0 💬 0 📌 0Using LLMs to advance the cognitive science of collectives
Very interesting new paper by @sucholutsky.bsky.social
Katherine Collins @norijacoby.bsky.social @billdthompson
@roberthawkins.bsky.social
arxiv.org/pdf/2506.00052
Catalogue de l’expo « Le monde selon l’IA »
Artiste et enseignant-chercheur, Samuel Bianchini collabore avec de nombreux ingénieurs et scientifiques pour explorer les relations qu'entretiennent les nouvelles technologies avec les contextes culturels dans lesquels elles s'insèrent. Dans cette troisième version de l'installation Prendre vie(s), Samuel Bianchini mobilise Flow Lenia, un logiciel de vie artificielle augmentee par IA. Cette forme d'animation, née d'une simulation mathématique appelée «jeu de la vie » en 1970, compose des systèmes susceptibles d'adopter des comportements émergents et inattendus. Prendre vie(s), version 03, 2020-2025 Développement informatique (algorithmes de vie et d'intelligence artificielles): Léon Denise et Adrian Mangel, sur la base de l'environnement logiciel Flow Lenia développé par l'équipe Flowers (Inris. Université de Bordeaux - Pierre-Yves Oudeyer, Clément Moulin-Fricr, Gautier Hamon et Erwan Plantee) à partir de Lenis. développé par Bert Chan (DeepMind). et avec la collaboration de Colin Bouvry Ce projet a bénéficié du soutien de l'École des arts décoratifs (Université PSL, Paris) et du festival accès)s( cultures électroniques Remerciements: Alain Declercq. Jean-Jacques Gay. Stéphane Trois Carrés
Le travail de Samuel Bianchini à partir des algorithmes de @pyoudeyer.bsky.social mis en lumière par le Jeu de paume dans son expo IA
06.06.2025 16:28 — 👍 3 🔁 1 💬 1 📌 1Merci pour le lien ! Pour être plus précis, ce sont les algorithmes développés par des membres de mon équipe, ici en particulier @eplantec.bsky.social @clemmoulinfrier.bsky.social @hamongautier.bsky.social et le système Flow Lenia sites.google.com/view/flowlen...
10.06.2025 12:15 — 👍 3 🔁 0 💬 0 📌 0Humans' ability to invent their own games & goals is at the core of open-ended learning.
Understanding and modeling computationally how they do it would be enlightening to understand better human cognition and build open-ended AI
Great step in this direction in new paper by Guy Davidson et al.
I reviewed "These Strange New Minds: How AI Learned to Talk and What It Means" by Chris Summerfield.
melaniemitchell.me/EssaysConten...
royalsocietypublishing.org/toc/rstb/202...
15.05.2025 11:47 — 👍 3 🔁 0 💬 0 📌 0Cool
15.05.2025 11:40 — 👍 5 🔁 0 💬 0 📌 0Another one.
09.05.2025 21:19 — 👍 4 🔁 1 💬 0 📌 0Here is a cool Flow-Lenia simulation, which is a continuous cellular automaton with two distinct features:
1. Mass conservation - sum of all activations is constant through time
2. Localized update rules - enables simulations with differently behaving matter on the same grid
Very happy that our paper received both the EvoApps best paper and the EvoStar best student paper! Congrats team!!
Emergent Kin Selection of Altruistic Feeding via Non-Episodic Neuroevolution
arxiv.org/abs/2411.10536
Check out @nicolasyax.bsky.social
thread about our paper (co-supervised by @pyoudeyer.bsky.social) where we show that evolutionary tree reconstruction can be successfully applied to map LLMs to map relations and predict their performance! Currently at @iclr-conf.bsky.social
And thank you @gaiamolinaro.bsky.social for presenting the work ! + thanks Jérémy Perez for leading the project and thanks the whole team Corentin Leger
@kovacgrgur.bsky.social @ccolas.bsky.social
@clemmoulinfrier.bsky.social
@maximederex.bsky.social
Generative AI is a cultural transmission technology:
it plays a growing role in generation, selection and transmission of ideas/opinions in human society 🧠🔄🌐
And yet we understand very little of this dynamics at this point 🤔❓
A step forward is our #ICLR2025 paper !👇
@thomwolf.bsky.social This is the HF space we discussed, allowing to map the space of all models on HF, and infer which derive from where :)
24.04.2025 13:47 — 👍 0 🔁 0 💬 0 📌 0Congratulations @nicolasyax.bsky.social for the amazing work, and @stepalminteri.bsky.social for the co-supervision !
24.04.2025 13:46 — 👍 2 🔁 1 💬 0 📌 0I have to say that when Nicolas pitched us the idea of this project, I was excited about the creativity, but was not convinced it would work: I was completely wrong, it worked close to directly! Beautiful!
24.04.2025 13:22 — 👍 0 🔁 0 💬 0 📌 0Imagine you can compute a (very) cheap behavioural signatures for LLMs and from it
1) infer their history (which previous models they derived from)
2) build large maps to navigate spaces of 100s of models
3) predict (coarsely) their performances in benchmarks
That's PhyloLM 🚀
We are starting a new major research project investigating the joint development of curiosity and metacognition in adolescents, where the Flowers lab will collaborate with @mjgruber.bsky.social 's lab at Univ. Cardiff, and Yana Fandakova at Univ. Trier !!! Open postdocs positions, see below 👇
16.04.2025 09:54 — 👍 6 🔁 1 💬 0 📌 0Why Self-Determination Theory Needs Computational Modelling: The Case of Competence and Optimal Challenge
by @codingconduct.cc E. Lintunen N. Aly @creativeendvs.bsky.social
osf.io/n6x8s/downlo...
Thanks @ccolas.bsky.social for pointing it out ! This has great potential for diversity search algorithms
03.04.2025 09:15 — 👍 1 🔁 0 💬 0 📌 0Forcing Diffuse Distributions out of Language Models
"When LLMs are used for real-world tasks where diversity of outputs is crucial their inability to produce
diffuse distributions over valid choices is a major hurdle"
New method to address this challenge by Zhang et al.:
arxiv.org/pdf/2404.10859
Accepting “the bitter lesson” and embracing the brain’s complexity by Dyer and Richards. Great article! www.thetransmitter.org/neuroai/acce...
26.03.2025 16:09 — 👍 33 🔁 9 💬 3 📌 3Interesting discussions, thanks for sharing ! As Pessoa and Sejnowski argue, multimodal brain-behaviour-environment in natural contexts would be key in this perspective
26.03.2025 17:33 — 👍 1 🔁 0 💬 0 📌 0"The Appeal of Insight: Why Riddles and Whodunits Captivate Us" - These studies contribute to a growing literature in which the cultural success of fictional stories is explained by their ability to tap into specific cognitive mechanisms.
osf.io/preprints/ps...
Extreme stances about AI and LLMs in particular (be them deflationary or inflationary) are very likely wrong, valid and certainly not good for an healthy debate. But where do they come from? We (with @giadapistilli.com) argue that common cognitive biases may play a role:
osf.io/preprints/ps...
Humans excel at estimating their own competence and progress on tasks. But can LLM agents do the same?
With 🧭MAGELLAN, our agent predicts its own learning progress across vast goal spaces, even generalizing to new tasks!
📄Paper: arxiv.org/abs/2502.07709