Tomas Knapen's Avatar

Tomas Knapen

@tknapen.bsky.social

Computational Neuroimaging Researcher based in Amsterdam

377 Followers  |  882 Following  |  30 Posts  |  Joined: 12.11.2024  |  2.1429

Latest posts by tknapen.bsky.social on Bluesky

Post image

Investigating individual-specific topographic organization has traditionally been a resource-intensive and time-consuming process. But what if we could map visual cortex organization in thousands of brains? Here we offer the community with a toolbox that can do just that! tinyurl.com/deepretinotopy

01.12.2025 11:26 โ€” ๐Ÿ‘ 75    ๐Ÿ” 36    ๐Ÿ’ฌ 4    ๐Ÿ“Œ 1

Our team's new publications cover the Nature portfolio! ๐Ÿงช๐Ÿง 

- Vision & touch (Nature, rdcu.be/eSsZR)
- Psychedelics (Nat Commun, rdcu.be/eSsZ2)
- Binocular rivalry (Nat Hum Behav, rdcu.be/eSsYW)
- CSF mobility (Nat Neurosci, rdcu.be/eSs0c)
- Numerical cognition (Commun Biol, rdcu.be/eSs0p)

01.12.2025 09:48 โ€” ๐Ÿ‘ 9    ๐Ÿ” 4    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0
Preview
Vicarious body maps bridge vision and touch in the human brain - Nature A mode of brain organization that connects visual and bodily reference frames may translate raw sensory impressions into more abstract formats that are useful for action, social cognition and semantic processing.

Nature research paper: Vicarious body maps bridge vision and touch in the human brain

go.nature.com/4839zaL

27.11.2025 20:36 โ€” ๐Ÿ‘ 58    ๐Ÿ” 13    ๐Ÿ’ฌ 6    ๐Ÿ“Œ 1
Post image

Massive congratulations to lead author @HedgerResearch, and co-authors Thomas Naselaris and @cvnlab .
Read the open-access paper here ๐Ÿ‘‡
bit.ly/VisualBodyMaps

#Neuroscience #BrainMapping #VicariousTouch

26.11.2025 16:00 โ€” ๐Ÿ‘ 7    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

This provides a mechanistic basis for everyday vicarious experiences โ€” like flinching when you see someone fall โ€” but the implications go far deeper:
โ€ข Social cognition
โ€ข Sensory and clinical neuroscience (e.g., ASD)
โ€ข Embodied AI & AGI development

26.11.2025 16:00 โ€” ๐Ÿ‘ 4    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

The core discovery:
Visual cortex isnโ€™t purely visual โ€” itโ€™s tiled with orderly somatotopic maps, aligned with the maps in primary somatosensory cortex.
Seeing recruits the same body-based computational machinery you use to feel your own body. x.com/HedgerResear...

26.11.2025 16:00 โ€” ๐Ÿ‘ 7    ๐Ÿ” 0    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0
Post image

New today in @Nature: your visual cortex contains touch-based body maps. bit.ly/VisualBodyMaps
Your brain transforms what you see into first-person, body-referenced codes: A previously unknown bridge between vision and touch.

26.11.2025 16:00 โ€” ๐Ÿ‘ 80    ๐Ÿ” 38    ๐Ÿ’ฌ 6    ๐Ÿ“Œ 11

On the nose

24.11.2025 18:35 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Very proud of Marcoโ€™s work in this project!

24.11.2025 18:17 โ€” ๐Ÿ‘ 3    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

The paper demonstrating that #psilocybin alters contextual computations is out in @natcomms.nature.com : doi.org/10.1038/s414...

Thanks to the reviewers and coauthors : @marcoaqil.bsky.social , @tknapen.bsky.social , @gillesdehollander.bsky.social , and Nina Vreugdenhil

23.11.2025 13:14 โ€” ๐Ÿ‘ 22    ๐Ÿ” 4    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0
Preview
pRF fitting toolbox wish list With this form we are taking stock of the field's wishes when it comes to pRF fitting software implementations. We will be presenting the results from this form in our kick-off meeting, and will use t...

Hey everyone at @vssmtg.bsky.social! If youโ€™re interested in pRF fitting, go visit Garikoitz Lerma-Usabiagaโ€™s poster on pRF fitting methods!

For our development of these tools, weโ€™re very interested to hear you want in these tools. Please fill out our questionnaire:

forms.gle/fx5UMs1362jv...

17.05.2025 12:03 โ€” ๐Ÿ‘ 10    ๐Ÿ” 5    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image 15.03.2025 03:44 โ€” ๐Ÿ‘ 4672    ๐Ÿ” 806    ๐Ÿ’ฌ 55    ๐Ÿ“Œ 41
Post image

๐˜—๐˜ฆ๐˜ณ๐˜ด๐˜ฐ๐˜ฏ, ๐˜ด๐˜ต๐˜ข๐˜ฏ๐˜ฅ๐˜ช๐˜ฏ๐˜จ ๐˜ฐ๐˜ฏ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฃ๐˜ฆ๐˜ข๐˜ค๐˜ฉ ๐˜ฅ๐˜ฐ๐˜ช๐˜ฏ๐˜จ ๐˜บ๐˜ฐ๐˜จ๐˜ข, ๐˜ด๐˜ต๐˜ข๐˜ฏ๐˜ฅ๐˜ช๐˜ฏ๐˜จ ๐˜ฐ๐˜ฏ ๐˜ฐ๐˜ฏ๐˜ฆ ๐˜ง๐˜ฐ๐˜ฐ๐˜ต, ๐˜ธ๐˜ช๐˜ต๐˜ฉ ๐˜ฐ๐˜ฏ๐˜ฆ ๐˜ฉ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฐ๐˜ฏ ๐˜ต๐˜ฉ๐˜ฆ ๐˜จ๐˜ณ๐˜ฐ๐˜ถ๐˜ฏ๐˜ฅ, ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฐ๐˜ณ๐˜ต๐˜ฆ๐˜ฅ ๐˜ช๐˜ฏ ๐˜ข๐˜ฏ ๐˜ถ๐˜ฏ๐˜ถ๐˜ด๐˜ถ๐˜ข๐˜ญ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ฉ๐˜ข๐˜ญ๐˜ญ๐˜ฆ๐˜ฏ๐˜จ๐˜ช๐˜ฏ๐˜จ ๐˜ฑ๐˜ฐ๐˜ด๐˜ฆ, ๐˜ธ๐˜ฉ๐˜ช๐˜ญ๐˜ฆ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜ฎ๐˜ฑ๐˜ญ๐˜ข๐˜ต๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ช๐˜ฅ๐˜ฆ๐˜ข ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜จ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ณ๐˜ข๐˜ต๐˜ช๐˜ท๐˜ฆ ๐˜ˆ๐˜ ๐˜ฉ๐˜ข๐˜ด โ€œ๐˜ธ๐˜ฐ๐˜ณ๐˜ญ๐˜ฅ ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ๐˜ดโ€

16.12.2024 01:00 โ€” ๐Ÿ‘ 119    ๐Ÿ” 21    ๐Ÿ’ฌ 13    ๐Ÿ“Œ 3
PNAS Proceedings of the National Academy of Sciences (PNAS), a peer reviewed journal of the National Academy of Sciences (NAS) - an authoritative source of high-impact, original research that broadly spans...

A thread motivated by a new paper on body representations in the human brain at a fine-grained (multi-unit) level, spearheaded by J Garcia Ramirez, T Theys, and P Janssen, where I was a small part of a bigger collaboration that also included S Bracci, R Murty and @nancykanwisher.bsky.social. 1/n

13.12.2024 16:15 โ€” ๐Ÿ‘ 14    ๐Ÿ” 2    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

And people sampling the videos with their eyes allows them to shape their own brain responses. This will likely generate an additional level of โ€œindividualityโ€ to brain responses, lowering ISC

11.12.2024 15:46 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Our results indicate the brain uses aligned, 'multiplexed' topographic maps to structure connections between vision and somatosensation. The computational machinery classically attributed to the somatosensory system is embedded within/aligned with that of the "visual" system. ๐Ÿงต

03.12.2024 15:13 โ€” ๐Ÿ‘ 3    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

These findings complement recent work indicating that dorsolateral visual cortex is a fundamentally multi-sensory part of the brain whose role extends beyond passive visual analysis to encompass semantic and bodily information relevant to interactions with the world. 20/n

03.12.2024 15:13 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

These encoding model fits revealed a new map of visual body-part selectivity, which overlapped with somatotopic tuning across the FBA, EBA and, strikingly, the visual word form area (VWFA). 19/n

03.12.2024 15:13 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

To address this, we combined the Natural Scenes Dataset with a pose-detection algorithm fit a body-part tuning encoding model. This allowed us to generate a map of visual body part preference, organised along a similar toe-to-tongue axis as the somatotopic connectivity maps. 18/n

03.12.2024 15:13 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Much of visual cortex is body-part selective. If this tuning relates to our somatotopic connectivity, we should also be able to predict visual body part selectivity from somatotopic tuning and reveal multi-modal body-referenced alignment playing out at more semantic levels. 17/n

03.12.2024 15:13 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

We did indeed find evidence for an alignment between visual field tuning and body part tuning beyond that expected by chance. We found this mostly dorsally and in the superior portion of EBA. 16/n

03.12.2024 15:13 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

But do these bodily maps predict anything about visual function? For instance, could lower body part tuning (e.g. toes) predict lower visual field tuning? Such an alignment might facilitate interactions with the environment. 15/n

03.12.2024 15:13 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

Yes! Throughout dorsolateral visual cortex, we see several body-part gradients separated by reversals. These maps were consistent across hemispheres and subject splits. 14/n

03.12.2024 15:13 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

But what about the body part tuning of these somatotopic activations? Do these dorsolateral regions exhibit orderly gradients, as found in 'core' somatosensory regions around the central sulcus? The answer is... 13/n

03.12.2024 15:13 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

We then repeated our somatosensory connectivity analyses separately on a movie section involving human agents and another without any humans. This demonstrated that somatotopic responses are not generic, but driven by movie content, specifically that featuring human action. 12/n

03.12.2024 15:13 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

Our analysis allows us to contrast somatotopic and retinotopic explained variance. All dorsolateral (but not ventral!) visual regions were characterised by multimodal topographic connectivity. These regions care as much or more about the body as they do the visual scene! 11/n

03.12.2024 15:13 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

We find that movie watching led to increased somatotopic connectivity in the somatosensory network outlined above. But strikingly, we now also find that dorsolateral visual cortex has structured connectivity with S1. Look at that red band across visual cortex! 10/n

03.12.2024 15:13 โ€” ๐Ÿ‘ 2    ๐Ÿ” 1    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0

So, we turned to the HCP movie watching experiment. This dataset allows us to investigate the relation of somatosensory connectivity to naturalistic visual experiences, where mental content is yoked to a visual stimulus. 9/n

03.12.2024 15:13 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

So, during resting state, endogenous activations throughout frontal, parietal, and insular cortex resonate along scaffolding provided by the somatotopic structure of bodily sensations. But how this resonance relates to mental content in resting state is unclear... 8/n

03.12.2024 15:13 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

Body part tuning revealed multiple somatotopic gradients and body-part tuning biases that are typically only revealed by exogenous stimulation (e.g. brushing people). Critically, we show that these same detailed principles can be revealed in the absence of sensory input! 7/n

03.12.2024 15:13 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

@tknapen is following 20 prominent accounts