Mathurin Massias's Avatar

Mathurin Massias

@mathurinmassias.bsky.social

Tenured Researcher @INRIA, Ockham team. Teacher @Polytechnique and @ENSdeLyon Machine Learning, Python and Optimization

631 Followers  |  93 Following  |  49 Posts  |  Joined: 19.11.2024  |  2.1211

Latest posts by mathurinmassias.bsky.social on Bluesky


Marie Skłodowska-Curie Actions Postdoctoral Fellowships: 2026 Inria Training Programme & Hosting Offers Inria proposes a full-fledged training programme for Marie Skłodowska-Curie Actions Postdoctoral Fellowships (MSCA PF) candidates, as well as numerous project hosting offers. This will allow you, thro...

With @quentinbertrand.bsky.social we have one offer for a Marie Sklodowska-Curie postdoctoral fellowships at Inria, to work on generative models : www.inria.fr/en/marie-skl...

contact me if interested! RT appreciated ❤️

16.02.2026 11:52 — 👍 3    🔁 2    💬 0    📌 0
Calliopé

We are recruiting four positions connected to Machine Learning, Statistical Learning, and AI for Science in the Applied Mathematics department at École polytechnique. Join our vibrant community at IP Paris and Hi! Paris IA center. List below🧵 tinyurl.com/3jpw9t26

06.02.2026 07:56 — 👍 11    🔁 19    💬 1    📌 0

There is an Associate Professor position in CS at ENS Lyon, with potential integration in my team, starting in sept 2026: DM me in interested!
Details at www.ens-lyon.fr/LIP/images/P...

05.02.2026 09:04 — 👍 6    🔁 9    💬 0    📌 1
Three snippets of python code showing how to use skrub Data Ops with the Optuna optimization library.The first snippet shows a standard randomized search with the Data Ops. The second snippet adds the parameter "backend", which is set to "optuna". The third snippet uses the Optuna visualization API to plot information from the study.

Three snippets of python code showing how to use skrub Data Ops with the Optuna optimization library.The first snippet shows a standard randomized search with the Data Ops. The second snippet adds the parameter "backend", which is set to "optuna". The third snippet uses the Optuna visualization API to plot information from the study.

Did you know that the skrub Data Ops support Optuna as backend to run hyperparameter search?

It's as easy as writing "backend='optuna'": this will set up a default Optuna study (and the TPE sampler) to replace the standard random sampler.

05.02.2026 08:52 — 👍 4    🔁 2    💬 1    📌 0
Post image

Les inscriptions aux journées MODE 2026 à Nice sont désormais ouvertes. Elles se dérouleront du 18 au 20 mars à l'Hôtel Saint-Paul.

Les inscriptions sont ouvertes jusqu'au 1 mars (majoration > 9/02). La deadline pour soumettre une communication est le **15 janvier**.

15.12.2025 08:11 — 👍 5    🔁 7    💬 1    📌 1
GRETSI : 20ème École d'Été en Traitement du Signal et des Images

L'école d'été #Peyresq2026 #GRETSI portera sur le thème "Modèles génératifs et transport optimal" du 21 au 27 juin 2026
gretsi.fr/peyresq2026
Inscription du 18 décembre 2025 au 27 février 2026

16.12.2025 09:06 — 👍 2    🔁 2    💬 0    📌 0
GRETSI : 20ème École d'Été en Traitement du Signal et des Images

Ecole d'été de Peyresq sur les modèles génératifs et le transport optimal : www.gretsi.fr/peyresq2026 (cours en français). Date limite de candidature le 27 février

12.12.2025 13:22 — 👍 9    🔁 6    💬 0    📌 0

Openreview opened the door to continuous and major revisions that nobody has time to check properly.
I think that we should come back to short one pdf page replies to reviews. It would mean having decisions quicker so that we actually have time to work on papers before resubmitting them.

12.12.2025 06:55 — 👍 19    🔁 7    💬 1    📌 0

[Concours CNRS] Si comme moi, vous attendiez et que vous n'aviez pas vu passer ça.
Ouverture du concours : (a priori) aujourd'hui 8/12
Dépôt des candidatures : jusqu'au 7 janvier

08.12.2025 09:19 — 👍 4    🔁 9    💬 0    📌 2
Advice for CNRS and INRIA recruitment | Mathurin Massias' webpage Mathurin Massias

Des conseils que j'ai regroupés pour ces concours (surtout section 1 2 et 3) : mathurinm.github.io/cnrs_inria_a...

02.12.2025 13:51 — 👍 9    🔁 7    💬 0    📌 1
Plénière de Julie Delon
YouTube video by GRETSI Plénière de Julie Delon

Une raison de plus de vous abonner à la chaîne YouTube du colloque #GRETSI :

"Transport optimal, de Monge à l’apprentissage profond", conférence plénière de Julie Delon au colloque #GRETSI2025

www.youtube.com/watch?v=ujYS...

21.11.2025 10:28 — 👍 7    🔁 5    💬 0    📌 0
Preview
MALAGA: Reinventing the Theory of Machine Learning on Large Graphs (ERC StG)

I have several offers for Master internships / PhDs on graph ML funded by ERC MALAGA for 2026. Don't hesitate to contact me to apply!

All infos here: nkeriven.github.io/malaga/

06.11.2025 13:56 — 👍 8    🔁 8    💬 0    📌 1

The JMLR story and operating model should be widely known in academia as a clear success story for full open access. I have friends in the humanities and pure sciences that have no clue this is even possible

05.11.2025 01:16 — 👍 14    🔁 7    💬 1    📌 0
Post image

To understand these phenomena, we study the spatial regularity of the velocity/denoiser over time: we observe a gap between the closed-form and trained model.

Applying Jacobian regularization, we recover effects seen previously on perturbed denoisers (drift vs noise)

05.11.2025 09:05 — 👍 0    🔁 0    💬 0    📌 0
Post image

Different loss weightings favor different times: which temporal regime drives the generation quality ? Controlled perturbations reveal: drift type effects at early times (& good FID) and noise type at late times (& bad FID)

05.11.2025 09:04 — 👍 0    🔁 0    💬 1    📌 0
Post image

In practice, training a denoiser involves design choices: the parametrization (velocity as in FM, residual Ɛ as in diffusion, or standard denoiser?) and the loss weighting, each influencing the generation quality

05.11.2025 09:04 — 👍 0    🔁 0    💬 1    📌 0
Video thumbnail

🌀🌀🌀New paper on the generation phases of Flow Matching arxiv.org/abs/2510.24830
Are FM & diffusion models nothing else than denoisers at every noise level?
In theory yes, *if trained optimally*. But in practice, do all noise level equally matter?

with @annegnx.bsky.social, S Martin & R Gribonval

05.11.2025 09:03 — 👍 20    🔁 4    💬 1    📌 1
Preview
The Generation Phases of Flow Matching: a Denoising Perspective Flow matching has achieved remarkable success, yet the factors influencing the quality of its generation process remain poorly understood. In this work, we adopt a denoising perspective and design a f...

We dig into this equivalence in our latest preprint with @annegnx.bsky.social ! arxiv.org/abs/2510.24830

30.10.2025 07:24 — 👍 1    🔁 1    💬 0    📌 0
Post image Post image

Strong afternoon session: Ségolène Martin on how to go from flow matching to denoisers (and hopefully come back?) and Claire Boyer on how learning rate and working in latent spaces affect diffusion models

24.10.2025 15:03 — 👍 3    🔁 1    💬 1    📌 0
Post image Post image

Followed by Scott Pesme on how to use diffusion/flow matching based MMSE to compute a MAP (and nice examples!), and Thibaut Issenhuth on new ways to learn consistency models
@skate-the-apple.bsky.social

24.10.2025 13:24 — 👍 2    🔁 0    💬 1    📌 0
Post image

Next is @annegnx.bsky.social presenting our neurips paper on why flow matching generalizes, while it shouldn't!

arxiv.org/abs/2506.03719

24.10.2025 09:05 — 👍 2    🔁 0    💬 1    📌 0
Post image Post image

Kickstarting our workshop on Flow matching and Diffusion with a talk by Eric Vanden Eijnden on how to optimize learning and sampling in Stochastic Interpolants!

Broadcast available at gdr-iasis.cnrs.fr/reunions/mod...

24.10.2025 08:30 — 👍 15    🔁 5    💬 1    📌 0
Post image

My paper on Generalized Gradient Norm Clipping & Non-Euclidean (L0, L1)-Smoothness (together with collaborators from EPFL) was accepted as an oral at NeurIPS! We extend the theory for our Scion algorithm to include gradient clipping. Read about it here arxiv.org/abs/2506.01913

19.09.2025 16:48 — 👍 16    🔁 3    💬 1    📌 0

merci David !

19.09.2025 16:34 — 👍 0    🔁 0    💬 0    📌 0

merci !

19.09.2025 16:33 — 👍 0    🔁 0    💬 0    📌 0

Our work on the generalization of Flow Matching got an oral at Neurips !

Go see @quentinbertrand.bsky.social present it there :)

19.09.2025 16:02 — 👍 25    🔁 3    💬 3    📌 0
PriGM@EurIPS2025 Workshop summary Machine learning theory has long focused on classical supervised learning settings, where a model is trained on input–label pairs drawn from a well-defined data distribution, with the...

🔥 Excited to announce the Workshop on the Principles of Generative Models at @euripsconf.bsky.social (the European conference parallel to NeurIPS 2025)
🇩🇰 Dec 6–7, Copenhagen
📝 Deadline for contributions: Oct 17
🔗 Website: sites.google.com/view/prigm-e...

16.09.2025 15:15 — 👍 5    🔁 2    💬 0    📌 0

Félicitations Anna !!

09.09.2025 11:36 — 👍 1    🔁 0    💬 1    📌 0

Oui, tout sera en anglais !

04.09.2025 12:12 — 👍 1    🔁 0    💬 0    📌 0

Oui !

04.09.2025 12:11 — 👍 1    🔁 0    💬 0    📌 0

@mathurinmassias is following 20 prominent accounts