Mathurin Massias's Avatar

Mathurin Massias

@mathurinmassias.bsky.social

Tenured Researcher @INRIA, Ockham team. Teacher @Polytechnique and @ENSdeLyon Machine Learning, Python and Optimization

613 Followers  |  91 Following  |  41 Posts  |  Joined: 19.11.2024  |  2.4043

Latest posts by mathurinmassias.bsky.social on Bluesky

Preview
The Generation Phases of Flow Matching: a Denoising Perspective Flow matching has achieved remarkable success, yet the factors influencing the quality of its generation process remain poorly understood. In this work, we adopt a denoising perspective and design a f...

We dig into this equivalence in our latest preprint with @annegnx.bsky.social ! arxiv.org/abs/2510.24830

30.10.2025 07:24 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image Post image

Strong afternoon session: Sรฉgolรจne Martin on how to go from flow matching to denoisers (and hopefully come back?) and Claire Boyer on how learning rate and working in latent spaces affect diffusion models

24.10.2025 15:03 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image Post image

Followed by Scott Pesme on how to use diffusion/flow matching based MMSE to compute a MAP (and nice examples!), and Thibaut Issenhuth on new ways to learn consistency models
@skate-the-apple.bsky.social

24.10.2025 13:24 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

Next is @annegnx.bsky.social presenting our neurips paper on why flow matching generalizes, while it shouldn't!

arxiv.org/abs/2506.03719

24.10.2025 09:05 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image Post image

Kickstarting our workshop on Flow matching and Diffusion with a talk by Eric Vanden Eijnden on how to optimize learning and sampling in Stochastic Interpolants!

Broadcast available at gdr-iasis.cnrs.fr/reunions/mod...

24.10.2025 08:30 โ€” ๐Ÿ‘ 15    ๐Ÿ” 5    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

My paper on Generalized Gradient Norm Clipping & Non-Euclidean (L0, L1)-Smoothness (together with collaborators from EPFL) was accepted as an oral at NeurIPS! We extend the theory for our Scion algorithm to include gradient clipping. Read about it here arxiv.org/abs/2506.01913

19.09.2025 16:48 โ€” ๐Ÿ‘ 14    ๐Ÿ” 3    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

merci David !

19.09.2025 16:34 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

merci !

19.09.2025 16:33 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Our work on the generalization of Flow Matching got an oral at Neurips !

Go see @quentinbertrand.bsky.social present it there :)

19.09.2025 16:02 โ€” ๐Ÿ‘ 25    ๐Ÿ” 3    ๐Ÿ’ฌ 3    ๐Ÿ“Œ 0
PriGM@EurIPS2025 Workshop summary Machine learning theory has long focused on classical supervised learning settings, where a model is trained on inputโ€“label pairs drawn from a well-defined data distribution, with the...

๐Ÿ”ฅ Excited to announce the Workshop on the Principles of Generative Models at @euripsconf.bsky.social (the European conference parallel to NeurIPS 2025)
๐Ÿ‡ฉ๐Ÿ‡ฐ Dec 6โ€“7, Copenhagen
๐Ÿ“ Deadline for contributions: Oct 17
๐Ÿ”— Website: sites.google.com/view/prigm-e...

16.09.2025 15:15 โ€” ๐Ÿ‘ 5    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Fรฉlicitations Anna !!

09.09.2025 11:36 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Oui, tout sera en anglais !

04.09.2025 12:12 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Oui !

04.09.2025 12:11 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Oui... c'est un compromis avec le fait d'avoir suffisamment de crรฉneaux et de temps de discussions aux posters. Tu peux รฉventuellement arriver un peu aprรจs le dรฉbut, et sinon รงa devrait รชtre accessible ร  distance ๐Ÿคž

04.09.2025 08:22 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Modรจles gรฉnรฉratifs : diffusion, flow matching et leurs applications - GdR IASIS Les modรจles gรฉnรฉratifs ont connu de rรฉcentes avancรฉes spectaculaires, au point que leurs derniรจres versions sont dรฉsormais capables de produire des images et du texte synthรฉtiques presque indiscernabl...

One-day workshop on Diffusion models and Flow matching, October 24th at @ensdelyon.bsky.social

Registration and call for contributions (short talk and poster) are open at
gdr-iasis.cnrs.fr/reunions/mod...

04.09.2025 07:40 โ€” ๐Ÿ‘ 10    ๐Ÿ” 7    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0

Super elegant approach !

27.06.2025 09:09 โ€” ๐Ÿ‘ 3    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

on second thoughts I'm not sure I understood. In the classical FM loss you do have to learn this derivative no ? The loss is :

27.06.2025 05:53 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

I was thinking of this:

27.06.2025 05:42 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

I was thinking of the linear interpolant yes ; I haven't seen papers where other are used

26.06.2025 15:57 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

it could even be velocity matching, and this time you do learn match the *conditional* velocities

26.06.2025 14:53 โ€” ๐Ÿ‘ 3    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Thanks for the kind words

26.06.2025 09:11 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

Then why does flow matching generalize?? Because it fails!

The inductive bias of the neural network prevents from perfectly learning u* and overfitting.

In particular neural networks fail to learn the velocity field for two particular time values.

See the paper for a finer analysis ๐Ÿ˜€

18.06.2025 08:15 โ€” ๐Ÿ‘ 5    ๐Ÿ” 3    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

We propose to regress directly against the optimal (deterministic) u* and show that it never degrades the performance
On the opposite, removing target stochasticity helps generalizing faster.

18.06.2025 08:12 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Video thumbnail

Yet flow matching generates new samples!

An hypothesis to explain this paradox is target stochasticity: FM targets the conditional velocity field ie only a stochastic approximation of the full velocity field u*

*We refute this hypothesis*: very early, the approximation almost equals u*

18.06.2025 08:11 โ€” ๐Ÿ‘ 3    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Video thumbnail

New paper on the generalization of Flow Matching www.arxiv.org/abs/2506.03719

๐Ÿคฏ Why does flow matching generalize? Did you know that the flow matching target you're trying to learn *can only generate training points*?

w @quentinbertrand.bsky.social @annegnx.bsky.social @remiemonet.bsky.social ๐Ÿ‘‡๐Ÿ‘‡๐Ÿ‘‡

18.06.2025 08:08 โ€” ๐Ÿ‘ 55    ๐Ÿ” 17    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 3
Preview
PnP-Flow: Plug-and-Play Image Restoration with Flow Matching In this paper, we introduce Plug-and-Play (PnP) Flow Matching, an algorithm for solving imaging inverse problems. PnP methods leverage the strength of pre-trained denoisers, often deep neural networks...

On Saturday Anne will also present some very, very cool work on how to leverage Flow Matching models to obtain sota Plug and Play methods:

PnP-Flow: Plug-and-Play Image Restoration with Flow Matching, poster #150 in poster session 6, Saturday at 3 pm

arxiv.org/abs/2410.02423

24.04.2025 13:46 โ€” ๐Ÿ‘ 6    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
A Visual Dive into Conditional Flow Matching | ICLR Blogposts 2025 Conditional flow matching (CFM) was introduced by three simultaneous papers at ICLR 2023, through different approaches (conditional matching, rectifying flows and stochastic interpolants). <br/> The m...

It was received quite enthusiastically here so time to share it again!!!

Our #ICLR2025 blog post on Flow Matching was published yesterday : iclr-blogposts.github.io/2025/blog/co...

My PhD student @annegnx.bsky.social will present it tomorrow in ICLR, ๐Ÿ‘‰poster session 4, 3 pm, #549 in Hall 3/2B ๐Ÿ‘ˆ

24.04.2025 13:45 โ€” ๐Ÿ‘ 11    ๐Ÿ” 6    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

The proximal operator generalizes projection in convex optimization. It converts minimisers to fixed points. It is at the core of nonsmooth splitting methods and was first introduced by Jean-Jacques Moreau in 1965. www.numdam.org/article/BSMF...

15.04.2025 05:00 โ€” ๐Ÿ‘ 21    ๐Ÿ” 3    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Redirecting to https://deepinv.github.io/deepinv/

๐Ÿšข๐Ÿšข deepinv v0.3.0 is here, with many new features! ๐Ÿšข ๐Ÿšข

Our passionate team of contributors keeps shipping more exciting tools!

Deepinverse (deepinv.github.io) is a library for solving imaging inverse problems with deep learning.

14.04.2025 06:33 โ€” ๐Ÿ‘ 11    ๐Ÿ” 4    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image Post image

I had a blast giving a summer school on generative models at AI Hub Senegal, in particular flow matching, with @quentinbertrand.bsky.social and @remiemonet.bsky.social

Our material is publicly available !!! github.com/QB3/SenHubIA...

ensdelyon.bsky.social

14.04.2025 07:50 โ€” ๐Ÿ‘ 17    ๐Ÿ” 3    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1

@mathurinmassias is following 20 prominent accounts