Christoph Bock Lab @ CeMM & MedUni Vienna's Avatar

Christoph Bock Lab @ CeMM & MedUni Vienna

@bocklab.bsky.social

Technology-driven biomedical research at CeMM Research Center for Molecular Medicine & MedUni Vienna #cancer #immunology #bioinformatics #AI #singlecell #CRISPR

1,282 Followers  |  338 Following  |  114 Posts  |  Joined: 08.10.2023  |  3.1705

Latest posts by bocklab.bsky.social on Bluesky

Nice example of "garbage-in, garbage out" behavior of CellWhisperer. We could probably add checks to mark meaningless queries. But for now we rely on cooperative users, and CellWhisperer has a clear warning: "Please keep in mind that CellWhisperer is an AI system and may produce misleading results."

16.11.2025 12:55 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
This is figure 1, which gives an overview of the CellWhisperer multimodal AI for natural-language analysis of transcriptome data.

This is figure 1, which gives an overview of the CellWhisperer multimodal AI for natural-language analysis of transcriptome data.

A paper in Nature Biotechnology presents CellWhisperer, which uses multimodal learning of transcriptomes and text to answer questions about single-cell RNA-sequencing data. go.nature.com/3XqzItR 🧬 πŸ§ͺ

15.11.2025 20:26 β€” πŸ‘ 43    πŸ” 10    πŸ’¬ 0    πŸ“Œ 1
Preview
Multimodal learning enables chat-based exploration of single-cell data - Nature Biotechnology CellWhisperer uses multimodal learning of transcriptomes and text to answer questions about single-cell RNA-sequencing data.

Multimodal learning enables chat-based exploration of single-cell data - @bocklab.bsky.social @cemm.oeaw.ac.at @meduniwien.ac.at go.nature.com/3WPGJnW

11.11.2025 16:58 β€” πŸ‘ 17    πŸ” 7    πŸ’¬ 1    πŸ“Œ 1

🀝 Huge thanks to the team! Moritz Schaefer & Peter Peneder with Daniel Malzl, Salvo Lombardo, Mihaela Peycheva, Jake Burton, Anna Hakobyan, Varun Sharma, Thomas Krausgruber, Celine Sin, Jârg Menche, Eleni Tomazou, Christoph Bock. @cemm.oeaw.ac.at, @meduniwien.ac.at, @stanna-ccri.bsky.social (11/11)

11.11.2025 12:52 β€” πŸ‘ 3    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

🧬 CellWhisperer introduces a chat-based way to explore scRNA-seq data. By enabling natural language analysis, it bridges biologists and bioinformaticiansβ€”paving the way for AI-driven bioinformatics assistants. (10/11)

11.11.2025 12:52 β€” πŸ‘ 4    πŸ” 0    πŸ’¬ 1    πŸ“Œ 1
Preview
Multimodal learning enables chat-based exploration of single-cell data - Nature Biotechnology CellWhisperer uses multimodal learning of transcriptomes and text to answer questions about single-cell RNA-sequencing data.

Ready to talk to cells?
πŸ“– Read the paper: doi.org/10.1038/s415...
🧬 Try the web app with public datasets: cellwhisperer.bocklab.org
πŸ–₯️ Analyze your own datasets: github.com/epigen/cellw...
(9/11)

11.11.2025 12:52 β€” πŸ‘ 2    πŸ” 1    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸ“š We trained on >1 million bulk & pseudo-bulk transcriptomes with textual annotations that we AI-curated from GEO & @CELLxGENE Census. Our training data is open source and useful for developing multimodal biomedical AI models and future bioinformatics research assistants. (8/11)

11.11.2025 12:52 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 2    πŸ“Œ 0
Post image

πŸͺ„ How does CellWhisperer work behind the scenes? We trained a multimodal AI that links transcriptomes and text, enabling free-text search and annotation of RNA profiles. And we connected this model to an LLM that we fine-tuned into a chat assistant for transcriptome data (7/11)

11.11.2025 12:52 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸš€ We also validated CellWhisperer’s chat-based analysis with conventional bioinformatics. CellWhisperer was >4x faster (and 10x cooler 😊). Our recommendation: Use CellWhisperer for dataset exploration – but statistics is still important to ensure rigor & reproducibility (6/11)

11.11.2025 12:52 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Video thumbnail

πŸ†• The CellWhisperer paper (doi.org/10.1038/s415...) includes several new analyses beyond our 2024 bioRxiv preprint (biorxiv.org/content/10.1...). For example, we used CellWhisperer for an AI-guided analysis of human organ development (5/11)

11.11.2025 12:52 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 3    πŸ“Œ 0
Post image

πŸ”¬ You can easily query large transcriptome datasets for your favorite biological process using CellWhisperer. Just open Tabula Sapiens (cellwhisperer.cemm.at/tabulasapiens/) or GEO (cellwhisperer.cemm.at/geo/) in CellWhisperer & type your query into the chat box – for example β€œinfection” (4/11)

11.11.2025 12:52 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Video thumbnail

πŸ” We investigate one of the identified cell clusters by selecting the cells & prompting CellWhisperer with β€˜Describe these cells in detail’. This interactive workflow is enabled by seamless integration of the CellWhisperer AI chat box into a version of CELLxGENE Explorer (3/11)

11.11.2025 12:52 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Video thumbnail

βš™οΈ To get started, let’s find cells by typing into the CellWhisperer chat box. For example β€˜Show me structural cells with immune functions’. CellWhisperer scores each transcriptome by how well it matches this textual query and colors by query match (red: high, blue: low) (2/11)

11.11.2025 12:52 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Video thumbnail

πŸ—¨οΈ Just published in Nature Biotechnology: Our CellWhisperer AI enables chat-based analysis of single-cell sequencing data. You can talk to your cells & figure out the biology without writing any computer code. Paper here: www.nature.com/articles/s41.... Annotated walkthrough in a thread below (1/11)

11.11.2025 12:52 β€” πŸ‘ 62    πŸ” 34    πŸ’¬ 2    πŸ“Œ 2
Preview
Multimodal learning enables chat-based exploration of single-cell data - Nature Biotechnology CellWhisperer uses multimodal learning of transcriptomes and text to answer questions about single-cell RNA-sequencing data.

Ready to talk to cells?
πŸ“– Read the paper: www.nature.com/articles/s41...
🧬 Try the web app with public datasets: cellwhisperer.bocklab.org
πŸ–₯️ Analyze your own datasets: github.com/epigen/cellw...
(9/11)

11.11.2025 12:40 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image

πŸ“š We trained on >1 million bulk & pseudo-bulk transcriptomes with textual annotations that we AI-curated from GEO & CELLxGENE Census. Our training data is open source and useful for developing multimodal biomedical AI models and future bioinformatics research assistants. (8/11)

11.11.2025 12:40 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸͺ„ How does CellWhisperer work behind the scenes? We trained a multimodal AI that links transcriptomes and text, enabling free-text search and annotation of RNA profiles. And we connected this model to an LLM that we fine-tuned into a chat assistant for transcriptome data (7/11)

11.11.2025 12:40 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸš€ We also validated CellWhisperer’s chat-based analysis with conventional bioinformatics. CellWhisperer was >4x faster (and 10x cooler 😊). Our recommendation: Use CellWhisperer for dataset exploration – but statistics is still important to ensure rigor & reproducibility (6/11)

11.11.2025 12:40 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Video thumbnail

πŸ†• The CellWhisperer paper (doi.org/10.1038/s415...) includes several new analyses beyond our 2024 bioRxiv preprint (biorxiv.org/content/10.1...). For example, we used CellWhisperer for an AI-guided analysis of human organ development (5/11)

11.11.2025 12:40 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸ”¬ You can easily query large transcriptome datasets for your favorite biological process using CellWhisperer. Just open Tabula Sapiens (cellwhisperer.cemm.at/tabulasapiens/) or GEO (cellwhisperer.cemm.at/geo/) in CellWhisperer & type your query into the chat box – for example β€œinfection” (4/11)

11.11.2025 12:40 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Video thumbnail

πŸ” We investigate one of the identified cell clusters by selecting the cells & prompting CellWhisperer with β€˜Describe these cells in detail’. This interactive workflow is enabled by seamless integration of the CellWhisperer AI chat box into a version of CELLxGENE Explorer (3/11)

11.11.2025 12:40 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Video thumbnail

βš™οΈ To get started, let’s find cells by typing into the CellWhisperer chat box. For example β€˜Show me structural cells with immune functions’. CellWhisperer scores each transcriptome by how well it matches this textual query and colors by query match (red: high, blue: low) (2/11)

11.11.2025 12:40 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸ—¨οΈChat with your cells, explore #CellWhisperer!
CeMM PI Christoph Bock (@bocklab.bsky.social) together with @meduniwien.ac.at & @stanna-ccri.bsky.social have developed a new #AI tool that lets scientists explore single-cell data using plain English.

➑️ https://bit.ly/3JQqe87
πŸ“„ https://bit.ly/3WJCxGi

11.11.2025 10:05 β€” πŸ‘ 5    πŸ” 1    πŸ’¬ 1    πŸ“Œ 1
Preview
Systematic discovery of CRISPR-boosted CAR T cell immunotherapies - Nature CELLFIE, a CRISPR platform for optimizing cell-based immunotherapies, identifies gene knockouts that enhance CAR T cell efficacy using in vitro and in vivo screens.

πŸ“‘ Check out our paper titled β€œSystematic discovery of CRISPR-boosted CAR T cell immunotherapies” at @Nature (open access): www.nature.com/articles/s41.... Feedback & suggestions are very welcome. (13/13)

24.09.2025 18:41 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

🀝 This was a large project & great teamwork by: P. Datlinger*, E.V. Pankevich*, C.D. Arnold*, N. Pranckevicius, J. Lin, D. Romanovskaia, M. SchÀfer, F. Piras, A.-C. Orts, A. Nemc, P. Biesaga, M. Chan, T. Neuwirth, A. Artemov, W. Li, S. LadstÀtter, T. Krausgruber, C. Bock (12/13)

24.09.2025 18:41 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

βš•οΈ Our CELLFIE platform supports clinical translation of CRISPR-boosted CAR T cells. For example, to avoid the DNA double-strand breaks introduced by CRISPR knockout, we performed a tiling base-editing screen across RHOG and identified promising gRNA for clinical testing. (11/13)

24.09.2025 18:41 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸ”₯ What’s next? Our discovery of strong combined effects for RHOG & FAS knockout underlines the potential of synergistic gene edits for boosting CAR T cell function. We thus integrated combinatorial screening into CELLFIE, using the Blainey lab’s CROPseq-multi method. (10/13)

24.09.2025 18:41 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸ”¬ From a technical perspective, we are excited how our new in vivo CROP-seq method improves gRNA detection (reading from an mRNA transcript as in nature.com/articles/nme...) and reduces experimental noise (by using UMIs), which enables larger screens with fewer mice. (9/13)

24.09.2025 18:41 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸ’ͺ We also observed prolonged survival for FAS knockout CAR T cells, likely because these cells are less effective at killing each other (β€œfratricide”). Combining RHOG & FAS knockout, we obtained more & better CAR T cells, which further improved survival in leukemic mice. (8/13)

24.09.2025 18:41 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸ” RHOG is a small GTPase involved in cell signaling. How does it influence CAR T cells ? We found that RHOG knockout increases the proliferative capacity of CAR T cells and helps them retain a highly functional state with reduced exhaustion and enhanced memory phenotype. (7/13)

24.09.2025 18:41 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

@bocklab is following 20 prominent accounts