OpenOceanModels's Avatar

OpenOceanModels

@openoceanmodels.bsky.social

Making oceanographic modeling accessible for education 🌊 | Free resources for exploring ocean processes. Promoted by @fjmachin.bsky.social at #ULPGC https://github.com/fjmachin/OpenOceanModels/ www.oceanofisica.ulpgc.es

15 Followers  |  27 Following  |  73 Posts  |  Joined: 22.11.2024  |  1.8407

Latest posts by openoceanmodels.bsky.social on Bluesky

Inception of the Global Drifter Program Read the full oceanography ephemeris.

On Feb 2, 1979, the Global Drifter Program began, launching satellite-tracked buoys to monitor ocean currents. A key tool for climate and ocean research 🌊 Read more: https://oceanofisica.ulpgc.es/efemeride/inception-global-drifter-program

02.02.2026 08:03 β€” πŸ‘ 0    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0
Preview
OpenOceanModels/Exercises/NS_nonlinearadvection_pressure at main Β· fjmachin/OpenOceanModels Contribute to fjmachin/OpenOceanModels development by creating an account on GitHub.

πŸ“Ž Code: bit.ly/NS_nonlinear...

πŸŽ₯ Video: youtu.be/jjFHG5EJeFc

#OpenOceanModels #NavierStokes #FluidDynamics #Bernoulli #Venturi #Oceanography #CFD

11.01.2026 12:36 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

5️⃣ In the animation, we increase the slope of the pressure field progressively, and observe how the velocity field reacts.

This helps visualize how fluid adjusts locally to maintain balance with external forcing.

11.01.2026 12:36 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

4️⃣ This setup echoes classic cases like the

Venturi effect

Bernoulli principle

Both describe how pressure energy converts into kinetic energy in steady flowsβ€”here derived directly from the Navier–Stokes equations.

11.01.2026 12:36 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

3️⃣ The result is a spatially varying velocity field.
Regions with steeper pressure gradients require stronger changes in velocity to maintain balance.

The velocity field is not evolving in timeβ€”it adjusts in space to compensate for pressure.

11.01.2026 12:36 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

2️⃣ We impose a pressure that increases linearly with
π‘₯. This creates a horizontal pressure gradient.

Our goal is to compute the velocity field 𝑒(π‘₯) that balances this gradientβ€”so that there's no acceleration, and the flow remains in a steady state.

11.01.2026 12:36 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

1️⃣ We focus on two terms of the Navier–Stokes momentum equations: the nonlinear advection term and the pressure gradient term.

We remove everything else: no viscosity, no Coriolis, no time acceleration.

11.01.2026 12:36 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

🧡 Thread β€” Exercise #10: Pressure vs Nonlinear Advection

What happens when pressure increases steadily in spaceβ€”but doesn’t change in timeβ€”while velocity adapts to maintain balance?

In this episode of OpenOceanModels, we isolate a classic fluid dynamic balance.
πŸ§΅πŸ‘‡

11.01.2026 12:36 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Next, we’ll explore what happens when nonlinear advection interacts with other forces. Stay tuned.

#NavierStokes #FluidDynamics #NonlinearAdvection #Oceanography #OpenOceanModels

26.10.2025 20:33 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Exercise #9. Nonlinear Advection: When Velocity Deforms Itself
YouTube video by OpenOceanModels Exercise #9. Nonlinear Advection: When Velocity Deforms Itself

πŸŽ₯ Watch the simulation:
www.youtube.com/watch?v=VTZK...

πŸ’» Code and explanation:
bit.ly/NS_nonlinear...

26.10.2025 20:33 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

This is pure nonlinear dynamics in action.
No net momentum is createdβ€”just redistributed through self-advection.

26.10.2025 20:33 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

We start from restβ€”no viscosity, no pressure gradient, no Coriolis force. Just a sharp velocity front.

The result?
The front deforms: faster regions overtake slower ones, turning a step into a ramp.

26.10.2025 20:33 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

🌊 OpenOceanModels – Case #9
This time, we isolate nonlinear advection in the Navier–Stokes equations.
What happens when the flow transports itself?

26.10.2025 20:33 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

6/
This is entry #8 in the OpenOceanModels series, where we isolate individual terms from Navier–Stokes to better understand geophysical flows.

#OpenOceanModels #NavierStokes #FluidDynamics #Viscosity #OceanModeling #Python #NumericalSimulation

29.06.2025 09:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

5/
πŸ’» Run the simulation yourself. The Python code is here:
bit.ly/OOM_momentum...

29.06.2025 09:42 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

4/
πŸ”¬ A clean setup to understand how viscosity operates in a fluid.
πŸ“½οΈ Watch the full animation:
www.youtube.com/watch?v=BA4j...

29.06.2025 09:42 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

3/
The higher the curvature of velocity, the stronger the diffusion.
That’s why the center of the Gaussian decays first and fastest.

29.06.2025 09:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

2/
We start with a Gaussian velocity pulse and watch it evolve.
No wave, no drift.
Just smoothing.
Just spreading.
This is momentum diffusion in its purest form.

29.06.2025 09:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

1/
What happens when we isolate only viscosity in the Navier–Stokes equations?
In this case, we strip everything elseβ€”no Coriolis, no pressure gradients, no advection. Just local acceleration and viscous diffusion.

29.06.2025 09:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Exercise #7. Acoustic Wave: Pressure-Driven Acceleration in Navier–Stokes Equations
YouTube video by OpenOceanModels Exercise #7. Acoustic Wave: Pressure-Driven Acceleration in Navier–Stokes Equations

πŸ’» Code (Python):
bit.ly/OOM_acoustic...

πŸŽ₯ Full simulation:
www.youtube.com/watch?v=1aJa...

#OpenOceanModels #NavierStokes #Acoustics #Sound #FluidDynamics #Oceanography #Python

24.05.2025 07:39 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

🌬 In the atmosphere, this mechanism is central.
🌊 In the ocean, it’s usually negligible β€” which is why many models filter it out.

But conceptually?
It’s a clean, beautiful example of how pressure alone can create motion.

24.05.2025 07:39 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

In this setup:
βœ– No Coriolis
βœ– No viscosity
βœ– No advection
Just pressure pushing fluid parcels and generating motion.

24.05.2025 07:39 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

By focusing only on how pressure drives motion, we recover the classical wave equation.
This governs how sound waves propagate in air β€” or any compressible medium.

24.05.2025 07:39 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Exercise #7. Acoustic Wave: Pressure-Driven Acceleration in Navier–Stokes Equations
YouTube video by OpenOceanModels Exercise #7. Acoustic Wave: Pressure-Driven Acceleration in Navier–Stokes Equations

πŸ”Š What does an acoustic wave look like in its purest form?
In Exercise #7 of OpenOceanModels, we isolate just two terms of the Navier–Stokes equations:
🟒 Local acceleration
🟒 Pressure gradient
🎬 www.youtube.com/watch?v=1aJa...
πŸ§΅πŸ‘‡

24.05.2025 07:39 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

6/6 πŸ”œ Next episodes: we'll progressively add other terms (pressure, viscosity, etc.) to build a deeper intuition of ocean & atmospheric fluid dynamics.

#OpenOceanModels #Oceanography #FluidDynamics #InertialOscillation #Science

26.04.2025 16:56 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

5/6 πŸ’» Want the code? Find it here:
bit.ly/OOM_inertial...

26.04.2025 16:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Exercise #6. Inertial Oscillations: Isolating Terms in Navier–Stokes Equations
YouTube video by OpenOceanModels Exercise #6. Inertial Oscillations: Isolating Terms in Navier–Stokes Equations

4/6 πŸŽ₯ See inertial oscillations in action:
youtu.be/Vw8OAoujJm0

26.04.2025 16:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

3/6 πŸŒ€ In this episode, we focus on just the time derivative and the Coriolis term. The resulting motion? Inertial oscillationsβ€”fluid parcels moving in circular paths due solely to Earth's rotation.

26.04.2025 16:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

2/6 πŸ’‘ By simplifying! We isolate terms in the equations to see what happens when only specific forces act on fluid parcels.

26.04.2025 16:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

@openoceanmodels is following 18 prominent accounts