OpenOceanModels's Avatar

OpenOceanModels

@openoceanmodels.bsky.social

Making oceanographic modeling accessible for education 🌊 | Free resources for exploring ocean processes. Promoted by @fjmachin.bsky.social at #ULPGC https://github.com/fjmachin/OpenOceanModels/ www.oceanofisica.ulpgc.es

16 Followers  |  23 Following  |  64 Posts  |  Joined: 22.11.2024  |  2.0966

Latest posts by openoceanmodels.bsky.social on Bluesky

Next, we’ll explore what happens when nonlinear advection interacts with other forces. Stay tuned.

#NavierStokes #FluidDynamics #NonlinearAdvection #Oceanography #OpenOceanModels

26.10.2025 20:33 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Exercise #9. Nonlinear Advection: When Velocity Deforms Itself
YouTube video by OpenOceanModels Exercise #9. Nonlinear Advection: When Velocity Deforms Itself

πŸŽ₯ Watch the simulation:
www.youtube.com/watch?v=VTZK...

πŸ’» Code and explanation:
bit.ly/NS_nonlinear...

26.10.2025 20:33 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

This is pure nonlinear dynamics in action.
No net momentum is createdβ€”just redistributed through self-advection.

26.10.2025 20:33 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

We start from restβ€”no viscosity, no pressure gradient, no Coriolis force. Just a sharp velocity front.

The result?
The front deforms: faster regions overtake slower ones, turning a step into a ramp.

26.10.2025 20:33 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

🌊 OpenOceanModels – Case #9
This time, we isolate nonlinear advection in the Navier–Stokes equations.
What happens when the flow transports itself?

26.10.2025 20:33 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

6/
This is entry #8 in the OpenOceanModels series, where we isolate individual terms from Navier–Stokes to better understand geophysical flows.

#OpenOceanModels #NavierStokes #FluidDynamics #Viscosity #OceanModeling #Python #NumericalSimulation

29.06.2025 09:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

5/
πŸ’» Run the simulation yourself. The Python code is here:
bit.ly/OOM_momentum...

29.06.2025 09:42 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

4/
πŸ”¬ A clean setup to understand how viscosity operates in a fluid.
πŸ“½οΈ Watch the full animation:
www.youtube.com/watch?v=BA4j...

29.06.2025 09:42 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

3/
The higher the curvature of velocity, the stronger the diffusion.
That’s why the center of the Gaussian decays first and fastest.

29.06.2025 09:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

2/
We start with a Gaussian velocity pulse and watch it evolve.
No wave, no drift.
Just smoothing.
Just spreading.
This is momentum diffusion in its purest form.

29.06.2025 09:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

1/
What happens when we isolate only viscosity in the Navier–Stokes equations?
In this case, we strip everything elseβ€”no Coriolis, no pressure gradients, no advection. Just local acceleration and viscous diffusion.

29.06.2025 09:42 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Exercise #7. Acoustic Wave: Pressure-Driven Acceleration in Navier–Stokes Equations
YouTube video by OpenOceanModels Exercise #7. Acoustic Wave: Pressure-Driven Acceleration in Navier–Stokes Equations

πŸ’» Code (Python):
bit.ly/OOM_acoustic...

πŸŽ₯ Full simulation:
www.youtube.com/watch?v=1aJa...

#OpenOceanModels #NavierStokes #Acoustics #Sound #FluidDynamics #Oceanography #Python

24.05.2025 07:39 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

🌬 In the atmosphere, this mechanism is central.
🌊 In the ocean, it’s usually negligible β€” which is why many models filter it out.

But conceptually?
It’s a clean, beautiful example of how pressure alone can create motion.

24.05.2025 07:39 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

In this setup:
βœ– No Coriolis
βœ– No viscosity
βœ– No advection
Just pressure pushing fluid parcels and generating motion.

24.05.2025 07:39 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

By focusing only on how pressure drives motion, we recover the classical wave equation.
This governs how sound waves propagate in air β€” or any compressible medium.

24.05.2025 07:39 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Exercise #7. Acoustic Wave: Pressure-Driven Acceleration in Navier–Stokes Equations
YouTube video by OpenOceanModels Exercise #7. Acoustic Wave: Pressure-Driven Acceleration in Navier–Stokes Equations

πŸ”Š What does an acoustic wave look like in its purest form?
In Exercise #7 of OpenOceanModels, we isolate just two terms of the Navier–Stokes equations:
🟒 Local acceleration
🟒 Pressure gradient
🎬 www.youtube.com/watch?v=1aJa...
πŸ§΅πŸ‘‡

24.05.2025 07:39 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

6/6 πŸ”œ Next episodes: we'll progressively add other terms (pressure, viscosity, etc.) to build a deeper intuition of ocean & atmospheric fluid dynamics.

#OpenOceanModels #Oceanography #FluidDynamics #InertialOscillation #Science

26.04.2025 16:56 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

5/6 πŸ’» Want the code? Find it here:
bit.ly/OOM_inertial...

26.04.2025 16:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Exercise #6. Inertial Oscillations: Isolating Terms in Navier–Stokes Equations
YouTube video by OpenOceanModels Exercise #6. Inertial Oscillations: Isolating Terms in Navier–Stokes Equations

4/6 πŸŽ₯ See inertial oscillations in action:
youtu.be/Vw8OAoujJm0

26.04.2025 16:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

3/6 πŸŒ€ In this episode, we focus on just the time derivative and the Coriolis term. The resulting motion? Inertial oscillationsβ€”fluid parcels moving in circular paths due solely to Earth's rotation.

26.04.2025 16:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

2/6 πŸ’‘ By simplifying! We isolate terms in the equations to see what happens when only specific forces act on fluid parcels.

26.04.2025 16:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

πŸ§ͺ1/6 🌊 OpenOceanModels #6 is live!
We're tackling the Navier–Stokes equationsβ€”the heart of ocean & atmosphere dynamics. They don't have analytical solutions, so how do we understand them?

26.04.2025 16:56 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Exercise #5. Coastal Kelvin Waves: Ocean's Hidden Rhythm
YouTube video by OpenOceanModels Exercise #5. Coastal Kelvin Waves: Ocean's Hidden Rhythm

(7/7) Watch the animation here πŸ‘‰ youtu.be/DedkjGfDtpw

#Oceanography #KelvinWaves #ScienceThread

21.03.2025 16:23 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

(6/7) Dive deeper, explore the code, and learn more here πŸ‘‰ bit.ly/coastal_kelv...

21.03.2025 16:23 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

(5/7) This example draws inspiration from Exercise 15 of Jochen Kaempf’s fantastic "Ocean Modelling for Beginners," which lays out the theory behind our model.

21.03.2025 16:23 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

(4/7) First explained by the legendary physicist Lord Kelvin in the late 19th century, these waves reveal the subtle interplay between rotation and ocean dynamics.

21.03.2025 16:23 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

(3/7) These waves journey along coastlines, always keeping the coast to their right in the Northern Hemisphere, and intriguingly, they reach maximum amplitude exactly at the shoreline.

21.03.2025 16:23 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

(2/7) Now, we dive into Coastal Kelvin Wavesβ€”extraordinary ocean waves steered by Earth's rotation.

21.03.2025 16:23 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

🌊 Coastal Kelvin Waves: Ocean's Hidden Rhythm 🌊

(1/7) Back to the fascinating world of waves! Earlier, we explored wave interference and saw how buoyancy itself can behave rhythmically like waves.

21.03.2025 16:23 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

7/ πŸ§ͺ Try it yourself:
bit.ly/OOM_wind_dri...

Modify wind and friction to see how they shape the gyre’s strength and structure.

Let’s make ocean modeling open and accessible! 🌊
#OpenOceanModels #Oceanography

21.03.2025 16:18 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

@openoceanmodels is following 19 prominent accounts