PhD student at the University of Pennsylvania. Currently, intern at MSR. Interested in reliable and replicable reinforcement learning and using it for knowledge discovery: https://marcelhussing.github.io/
All posts are my own.
cs phd @upenn advised by Michael Kearns, Aaron Roth, and Duncan Watts| previously @stanford | she/her
https://psamathe50.github.io/sikatasengupta/
wharton stats phd — ml theory, ml for science
prev: comp neuro, data, physics
working with Edgar Dobriban and Konrad Körding
also some sports (esp. philly! go birds)
PhD student at University of Alberta. Interested in reinforcement learning, imitation learning, machine learning theory, and robotics
https://chanb.github.io/
Penn CS PhD student and IBM PhD Fellow studying strategic algorithmic interaction. Calibration, commitment, collusion, collaboration. She/her. Nataliecollina.com
Machine Learning @ University of Edinburgh | AI4Science | optimization | numerics | networks | co-founder @ MiniML.ai | ftudisco.gitlab.io
Associate Professor at CS UWaterloo
Machine Learning
Lab: opallab.ca
PhD student at @cmurobotics.bsky.social working on interactive algorithms for agentic alignment (e.g. imitation/RLHF). no model is an island. https://gokul.dev/.
Group Leader in Tübingen, Germany
I’m 🇫🇷 and I work on RL and lifelong learning. Mostly posting on ML related topics.
doing a phd in RL/online learning on questions related to exploration and adaptivity
> https://antoine-moulin.github.io/
PI at Helmholtz AI, Faculty at TU Munich, Fellow at Zuse School for reliable AI, Branco Weiss Fellow, ELLIS Scholar.
Prev: Cambridge CBL, St John's College, ETH Zürich, Google Brain, Microsoft Research, Disney Research.
https://fortuin.github.io/
Associate professor in machine learning at the University of Amsterdam. Topics: (online) learning theory and the mathematics of interpretable AI.
www.timvanerven.nl
Theory of Interpretable AI seminar: https://tverven.github.io/tiai-seminar
Information theory, probability, statistics. Churchill Professor of Mathematics of Information @UofCambridge: dpmms.cam.ac.uk/person/ik355/ 🧮 #MathSky 🧪 #Science
[used to be @yiannis_entropy at the other place]
Assistant Professor @Dept. Of Computer Science, University of Copenhagen, Ex Postdoc @MPI-IS, ETHZ, PhD @University of Oxford, B.Tech @CSE,IITK.
ML & Privacy Prof at the University of Melbourne, Australia. Deputy Dean Research. Prev Microsoft Research, Berkeley EECS PhD. @bipr on the X bird site. He/him.
Computer science professor at Carnegie Mellon. Researcher in machine learning. Algorithmic foundations of responsible AI (e.g., privacy, uncertainty quantification), interactive learning (e.g., RLHF).
https://zstevenwu.com/
Assistant Professor at BU CDS
EconCS | Theory of CS | MD+AI+DS4SG | MD4SG co-founder
Previously Columbia, UW, Oberlin. Views are mine alone.
www.kiragoldner.com
Assistant Prof of CS at the University of Waterloo, Faculty and Canada CIFAR AI Chair at the Vector Institute. Joining NYU Courant in September 2026. Co-EiC of TMLR. My group is The Salon. Privacy, robustness, machine learning.
http://www.gautamkamath.com
Computer science, math, machine learning, (differential) privacy
Researcher at Google DeepMind
Kiwi🇳🇿 in California🇺🇸
http://stein.ke/
Professor at Penn, Amazon Scholar at AWS. Interested in machine learning, uncertainty quantification, game theory, privacy, fairness, and most of the intersections therein