Sophia Sirko-Galouchenko πŸ‡ΊπŸ‡¦'s Avatar

Sophia Sirko-Galouchenko πŸ‡ΊπŸ‡¦

@ssirko.bsky.social

PhD student in visual representation learning at Valeo.ai and Sorbonne UniversitΓ© (MLIA)

210 Followers  |  325 Following  |  10 Posts  |  Joined: 10.08.2023  |  1.8644

Latest posts by ssirko.bsky.social on Bluesky

Post image Post image

Thrilled to present DIP at #ICCV2025! Great discussions and insightful questions during the poster session. Thank you to everyone who stopped by!

24.10.2025 01:46 β€” πŸ‘ 7    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

Happy to represent Ukraine at #ICCV2025 . Come see my poster today at 11:45 (#399)!

21.10.2025 19:35 β€” πŸ‘ 17    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0

Come say hi to our poster October 21st at 11:45 poster session 1 (#399)! We introduce unsupervised post-training of ViTs that enhances dense features for in-context tasks.
First conference as a PhD student, really excited to meet new people.

18.10.2025 19:22 β€” πŸ‘ 6    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0
Post image

Our recent research will be presented at @iccv.bsky.social! #ICCV2025
We’ll present 5 papers about:
πŸ’‘ self-supervised & representation learning
🌍 3D occupancy & multi-sensor perception
🧩 open-vocabulary segmentation
🧠 multimodal LLMs & explainability

valeoai.github.io/posts/iccv-2...

17.10.2025 22:09 β€” πŸ‘ 8    πŸ” 5    πŸ’¬ 1    πŸ“Œ 1
Post image Post image

Another great event for @valeoai.bsky.social team: a PhD defense of Corentin Sautier.

His thesis Β«Learning Actionable LiDAR Representations w/o AnnotationsΒ» covers the papers BEVContrast (learning self-sup LiDAR features), SLidR, ScaLR (distillation), UNIT and Alpine (solving tasks w/o labels).

07.10.2025 12:29 β€” πŸ‘ 9    πŸ” 4    πŸ’¬ 1    πŸ“Œ 1
Post image Post image

So excited to attend the PhD defense of @bjoernmichele.bsky.social at @valeoai.bsky.social! He’s presenting his research results of the last 3 years in 3D domain adaptation: SALUDA (unsupervised DA), MuDDoS (multimodal UDA), TTYD (source-free UDA).

06.10.2025 12:18 β€” πŸ‘ 12    πŸ” 2    πŸ’¬ 2    πŸ“Œ 0
Preview
GitHub - sirkosophia/DIP: Official implementation of DIP: Unsupervised Dense In-Context Post-training of Visual Representations Official implementation of DIP: Unsupervised Dense In-Context Post-training of Visual Representations - sirkosophia/DIP

Work done in collaboration with
@spyrosgidaris.bsky.social‬ @vobeckya.bsky.social‬ @abursuc.bsky.social and Nicolas Thome

Paper: arxiv.org/abs/2506.18463
Github: github.com/sirkosophia...

25.06.2025 19:21 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Post image Post image Post image

6/n Benefits πŸ’ͺ
- < 9h on a single A100 gpu.
- Improves across 6 segmentation benchmarks
- Boosts performance for in-context depth prediction.
- Plug-and-play for different ViTs: DINOv2, CLIP, MAE.
- Robust in low-shot and domain shift.

25.06.2025 19:21 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

5/n Why is DIP unsupervised?

DIP doesn't require manually annotated segmentation masks for its post-training. To accomplish this, it leverages Stable Diffusion (via DiffCut) alongside DINOv2R features to automatically construct in-context pseudo-tasks for its post-training.

25.06.2025 19:21 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

4/n MeetΒ Dense In-context Post-training (DIP)! πŸ”„

- Meta-learning inspired: adopts episodic training principles
- Task-aligned: Explicitly mimics downstream dense in-context tasks during post-training.
- Purpose-built: Optimizes the model for dense in-context performance.

25.06.2025 19:21 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

3/n Most unsupervised (post-)training methods for dense in-context scene understanding rely on self-distillation frameworks with (somewhat) complicated objectives and network components. Hard to interpret, tricky to tune.

Is there a simpler alternative? πŸ‘€

25.06.2025 19:21 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

2/n What is dense in-context scene understanding?

Formulate dense prediction tasks as nearest-neighbor retrieval problems using patch feature similarities between query and the labeled prompt images (introduced in @ibalazevic.bsky.social‬ et al.’s HummingBird; figure below from their work).

25.06.2025 19:21 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

1/n πŸš€New paper out - accepted at #ICCV2025!

Introducing DIP: unsupervised post-training that enhances dense features in pretrained ViTs for dense in-context scene understanding

Below: Low-shot in-context semantic segmentation examples. DIP features outperform DINOv2!

25.06.2025 19:21 β€” πŸ‘ 20    πŸ” 6    πŸ’¬ 1    πŸ“Œ 4
Video thumbnail

πŸš€Thrilled to introduce JAFARβ€”a lightweight, flexible, plug-and-play module that upsamples features from any Foundation Vision Encoder to any desired output resolution (1/n)

Paper : arxiv.org/abs/2506.11136
Project Page: jafar-upsampler.github.io
Github: github.com/PaulCouairon...

16.06.2025 13:58 β€” πŸ‘ 26    πŸ” 6    πŸ’¬ 1    πŸ“Œ 0
Post image

Our paper "LiDPM: Rethinking Point Diffusion for Lidar Scene Completion" got accepted to IEEE IV 2025!

tldr: LiDPM enables high-quality LiDAR completion by applying a vanilla DDPM with tailored initialization, avoiding local diffusion approximations.

Project page: astra-vision.github.io/LiDPM/

28.04.2025 10:18 β€” πŸ‘ 12    πŸ” 4    πŸ’¬ 0    πŸ“Œ 1
Post image Post image

πŸ”₯πŸ”₯πŸ”₯ CV Folks, I have some news! We're organizing a 1-day meeting in center Paris on June 6th before CVPR called CVPR@Paris (similar as NeurIPS@Paris) πŸ₯πŸΎπŸ₯–πŸ·

Registration is open (it's free) with priority given to authors of accepted papers: cvprinparis.github.io/CVPR2025InPa...

Big πŸ§΅πŸ‘‡ with details!

21.03.2025 06:43 β€” πŸ‘ 137    πŸ” 51    πŸ’¬ 8    πŸ“Œ 10

This amazing team ❀️

27.01.2025 17:01 β€” πŸ‘ 19    πŸ” 3    πŸ’¬ 1    πŸ“Œ 0

As I haven't found it out there yet, I made the Women in computer vision started pack.

Many more missing, please let me know how is already in bsky to add them!

go.bsky.app/BowzivT

22.11.2024 23:43 β€” πŸ‘ 43    πŸ” 14    πŸ’¬ 11    πŸ“Œ 0

@ssirko is following 20 prominent accounts