Some journals are claiming that you need to pay big $$ for gold open access to comply with NIH's new public access policy. FYI that is total bs. You can comply by depositing the Accepted Manuscript into PubMed Central on the Date of Publication without embargo. Pass it on.
26.07.2025 00:52 β π 118 π 66 π¬ 6 π 3
See you soon!
05.07.2025 09:28 β π 1 π 0 π¬ 0 π 0
Please reach out if you want help with these probes. I benefited immensely by having early access to them, and so I feel an obligation/responsibility to help others adopt the tech. And, stay tuned for open-source hardware/software for a motorized microdrive to lower these (and other) probes!
23.06.2025 20:09 β π 1 π 1 π¬ 0 π 0
Finally out! I've been using these probes for a few years and they have been truly transformative for us. The core experiments of my lab are based around them.
23.06.2025 21:05 β π 17 π 2 π¬ 0 π 0
Please reach out if you want help with these probes. I benefited immensely by having early access to them, and so I feel an obligation/responsibility to help others adopt the tech. And, stay tuned for open-source hardware/software for a motorized microdrive to lower these (and other) probes!
23.06.2025 20:09 β π 1 π 1 π¬ 0 π 0
Large-scale high-density brain-wide neural recording in nonhuman primates - Nature Neuroscience
Neuropixels 1.0 NHP is a 45-mm, high-density silicon probe capable of recording large numbers of neurons with single-neuron resolution from most areas in a macaqueβs brain.
Our paper on NHP neuropixels is finally out in Nat Neuro! These probes have already been transformative and will usher in a new era of primate neuroscience. I am extremely proud to have played a very small role in this project. I can't wait to see what our community discovers. tinyurl.com/54u3hrj8
23.06.2025 19:31 β π 63 π 11 π¬ 1 π 2
This is amazing.
13.06.2025 09:57 β π 1 π 0 π¬ 0 π 0
A reminder that the deadline for this is coming up! Please spread the word/repost!
20.05.2025 16:15 β π 1 π 1 π¬ 0 π 0
These charlatans seem to outdo their stupidity every single day.
29.05.2025 13:54 β π 0 π 0 π¬ 0 π 0
The deadline for this is β°THIS SATURDAY!β° Please consider applying and share your science with the MIT BCS community!π§
27.05.2025 22:10 β π 8 π 3 π¬ 1 π 0
22.05.2025 22:55 β π 340 π 84 π¬ 4 π 7
A reminder that the deadline for this is coming up! Please spread the word/repost!
20.05.2025 16:15 β π 1 π 1 π¬ 0 π 0
No, I mean your brain! We have some neural data and we're trying to understand how it relates to behavior. That's the process that is severely under constrained.
18.05.2025 21:38 β π 1 π 0 π¬ 1 π 0
How are the subspaces defined? How do you know whether or not trajectories are moving through a null space with regard to the output? You still have to make assumptions about how neurons are combined/what signals are relevant to behavior/computation.
18.05.2025 21:05 β π 1 π 0 π¬ 1 π 0
The manifold view (in its purest form) would miss this organizing principle entirely. One reason is because it doesn't actually define what a "population" is, beyond whatever neurons you happen to record from. Then, all bets are on for how this "pop." is linked to behavior. DOF = # of neurons.
18.05.2025 18:54 β π 2 π 0 π¬ 1 π 0
An example where we've done this successfully is the primate visual system, where the receptive field of a neuron is informative about how it is combined downstream. I.e. there's a relationship between functional properties and connectivity that is critical to how we analyze and interpret data.
18.05.2025 18:54 β π 0 π 0 π¬ 1 π 0
Not sure I agree re: manifolds, beyond it being trivial that structured connectivity will lead to the observation of manifolds. More important to identify the organizing principles of the system that constrain the link between brain & behav. In most cases this link is severely underconstrained.
18.05.2025 18:54 β π 3 π 0 π¬ 2 π 0
Some examples:
www.science.org/doi/full/10....
www.jneurosci.org/content/29/2...
elifesciences.org/articles/67258
www.biorxiv.org/content/10.1...
18.05.2025 18:26 β π 1 π 0 π¬ 1 π 0
Agreed. IMO, the key question is how much flexibility does the brain have to extract information that is present in the population activity? For a variety of reasons, I think this read-out is highly constrained, and so the brain figures out solutions that are robust and generalizable.
18.05.2025 18:03 β π 4 π 1 π¬ 1 π 0
Many approaches assume precise control over how single neurons are combined. The "cost" of this mechanism seems high. If the brain can organize things such that random weights get you pretty far, I think that's an easier/more robust solution. I think this is one reason why topography is everywhere.
18.05.2025 18:15 β π 7 π 2 π¬ 1 π 0
Many approaches assume precise control over how single neurons are combined. The "cost" of this mechanism seems high. If the brain can organize things such that random weights get you pretty far, I think that's an easier/more robust solution. I think this is one reason why topography is everywhere.
18.05.2025 18:15 β π 7 π 2 π¬ 1 π 0
Agreed. IMO, the key question is how much flexibility does the brain have to extract information that is present in the population activity? For a variety of reasons, I think this read-out is highly constrained, and so the brain figures out solutions that are robust and generalizable.
18.05.2025 18:03 β π 4 π 1 π¬ 1 π 0
I have the opposite intuition: A highly specific, highly-trained task is exactly the case where the brain could learn a task-specific, optimal decoder. In natural settings, a task-general decoder is more likely (and would thus appear suboptimal for any single task.).
18.05.2025 14:55 β π 8 π 1 π¬ 3 π 0
Always seemed strange that this result is typically no longer taken seriously when thinking about how activity is decoded. Of course, @marlenecohen.bsky.social's group and others have done amazing work expanding on this though. All-in-all, lots of evidence that the read-out is highly constrained.
17.05.2025 19:48 β π 2 π 1 π¬ 0 π 0
Awesome paper. Consistent with classic work from Movshon, Newsome, and co showing that single neurons in MT are almost as sensitive as behaviorβi.e. animals are clearly not using a task-specific optimal decoder. Instead, data are consistent with simple averaging of correlated neurons.
17.05.2025 19:48 β π 0 π 0 π¬ 2 π 0
When these theories have failed in more complicated tasks, it has been and will likely continue to be in interesting/informative ways. I don't see this process as a race to the bottom, even if simple tasks might sometimes hide the true underlying logic of the system.
18.04.2025 23:38 β π 0 π 0 π¬ 0 π 0
IMO, questions about dim. are only useful if they tell us about the logic of the system. Simple tasks have given us some handle on this logic in LIP and the oculomotor system more generallyβgroups of spatially selective neurons compete until one exceeds a threshold, shifting our gaze/attention.
18.04.2025 23:38 β π 0 π 0 π¬ 1 π 0
The geometry of the neural state space of decisions
How do populations of neurons collectively encode and process information during cognitive tasks? We analyze high-yield population recordings from the macaque lateral intraparietal area (LIP) during a...
Gotcha thanks! One distinction: task-related signals in LIP were low-d, which is indeed predicted by the low-d task, but the LIP pop. activity is high-d, due in large part to the diversity of neurons' response fields (see newer work from a collab. with @kenmiller.bsky.social; tinyurl.com/yztstvbj).
18.04.2025 23:38 β π 4 π 0 π¬ 2 π 0
Neuroscience Professor at Mount Sinai, into the science of squad goals.
https://www.wulab.bio/
Scientist, Professor
Passionate advocate for responsible and humane research involving animals.
#ThankAMonkey #EndSufferingThruScience
Views are my own.
Cognitive neuroscientist | cerebellum, brain stim, neuroimaging
Associate Research Scientist at Center for Theoretical Neuroscience @cu_neurotheory @ZuckermanBrain @Columbia K99-R00 scholar @NIH @NatEyeInstitute
https://toosi.github.io/
Former NIH Program Director for Neuroengineering. Current Co-Director of Wisconsin Institute for Translational Neuroengineering (WITNe).
Opinions are official positions of the U.S Government and Lyle Lovett.
I do vision neuroscience research, focusing on IT cortex.
Neuroscientist, Nature Neuroscience (@natneuro.nature.com) Chief Editor, Upstate NY mama of 2. Opinions are my own.
Systems neuroscientist. Assistant Professor at
Cornell. Studying the computational and circuit mechanisms of learning, memory and natural behaviors in rodents
Assistant Professor in computational neuroscience at Cold Spring Harbor Laboratory. Think cortically, act neuronally.
cowleygroup.cshl.edu
Circuits, Spikes & Development π
Postdoc Fellow in the Moser Lab
~ Developmental Systems Neuroscience ~
Neuroscientist in the making...
PhD student Arber lab
@FMIscience.bsky.social @Biozentrum.bsky.social
MD from @SantAnnaPisa @Unipisa
Neuroprosthetics postdoctoral fellow at UC Davis Health, developing next-gen communication devices. Breaking down barriers in science. Advocate for science literacy π§ π¦Ύπ #Neurotech
Schmidt Science Fellow & BWF PDEP Fellow
PhD student in the Hoffman Lab @Vanderbilt
Interested in the circuit computations underlying learning and generalization.
Jane Coffin Childs Fund Fellow; postdoc in David Ginty lab at Harvard Medical School.
Former PhD student in Carandini&Harris lab at UCL.
MIT BCS | grad
part-time reductionist, full time human
Neuroscientist studying social learning and metalearning at MIT
Neuroscience postdoc at Princeton | neuronal populations | dynamical systems | decision-making
https://thomaszhihaoluo.scholar.princeton.edu/
cybernetic cognitive control π€
computational cognitive neuroscience π§
postdoc princeton neuro π
he/him π¨π¦ harrisonritz.github.io
Postdoc at MIT. Cognitive Neuroscience.