Cui Ding's Avatar

Cui Ding

@cuiding.bsky.social

30 Followers  |  60 Following  |  6 Posts  |  Joined: 05.03.2025  |  1.9387

Latest posts by cuiding.bsky.social on Bluesky

Post image

Let's meet at #EMNLP and talk about multilingual knowledge benchmarks!

⚠️MLAMA is full of disfluent sentences
❓Reason: templated translation
πŸ’‘Simple full-sentence translation improves factual retrieval up to 25%
πŸ™ŒRemember to check your benchmarks with speakers!

Link: arxiv.org/pdf/2510.15115

28.10.2025 21:09 β€” πŸ‘ 1    πŸ” 1    πŸ’¬ 0    πŸ“Œ 0
Post image

πŸ’₯Introducing new paper: arxiv.org/pdf/2510.17715, QueST β€” train specialized generators to create challenging coding problems.
From Qwen3-8B-Base
βœ… 100K synthetic problems: better than Qwen3-8B
βœ… Combining with human written problems: matches DeepSeek-R1-671B
🧡(1/5)

21.10.2025 14:01 β€” πŸ‘ 4    πŸ” 3    πŸ’¬ 1    πŸ“Œ 0
R code and output showing the new functionality:
``` r
## pak::pkg_install("quentingronau/bridgesampling#44")
## see: https://cran.r-project.org/web/packages/bridgesampling/vignettes/bridgesampling_example_stan.html
library(bridgesampling)

### generate data ###
set.seed(12345)
mu <- 0
tau2 <- 0.5
sigma2 <- 1
n <- 20
theta <- rnorm(n, mu, sqrt(tau2))
y <- rnorm(n, theta, sqrt(sigma2))

### set prior parameters ###
mu0 <- 0
tau20 <- 1
alpha <- 1
beta <- 1

stancodeH0 <- 'data {
  int<lower=1> n; // number of observations
  vector[n] y; // observations
  real<lower=0> alpha;
  real<lower=0> beta;
  real<lower=0> sigma2;
}
parameters {
  real<lower=0> tau2; // group-level variance
  vector[n] theta; // participant effects
}
model {
  target += inv_gamma_lpdf(tau2 | alpha, beta);
  target += normal_lpdf(theta | 0, sqrt(tau2));
  target += normal_lpdf(y | theta, sqrt(sigma2));
}
'
tf <- withr::local_tempfile(fileext = ".stan")
writeLines(stancodeH0, tf)
mod <- cmdstanr::cmdstan_model(tf, quiet = TRUE, force_recompile = TRUE)

fitH0 <- mod$sample(
  data = list(y = y, n = n,
              alpha = alpha,
              beta = beta,
              sigma2 = sigma2),
  seed = 202,
  chains = 4,
  parallel_chains = 4,
  iter_warmup = 1000,
  iter_sampling = 50000,
  refresh = 0
)
#> Running MCMC with 4 parallel chains...
#> 
#> Chain 3 finished in 0.8 seconds.
#> Chain 2 finished in 0.8 seconds.
#> Chain 4 finished in 0.8 seconds.
#> Chain 1 finished in 1.1 seconds.
#> 
#> All 4 chains finished successfully.
#> Mean chain execution time: 0.9 seconds.
#> Total execution time: 1.2 seconds.
H0.bridge <- bridge_sampler(fitH0, silent = TRUE)
print(H0.bridge)
#> Bridge sampling estimate of the log marginal likelihood: -37.73301
#> Estimate obtained in 8 iteration(s) via method "normal".

#### Expected output:
## Bridge sampling estimate of the log marginal likelihood: -37.53183
## Estimate obtained in 5 iteration(s) via method "normal".
```

R code and output showing the new functionality: ``` r ## pak::pkg_install("quentingronau/bridgesampling#44") ## see: https://cran.r-project.org/web/packages/bridgesampling/vignettes/bridgesampling_example_stan.html library(bridgesampling) ### generate data ### set.seed(12345) mu <- 0 tau2 <- 0.5 sigma2 <- 1 n <- 20 theta <- rnorm(n, mu, sqrt(tau2)) y <- rnorm(n, theta, sqrt(sigma2)) ### set prior parameters ### mu0 <- 0 tau20 <- 1 alpha <- 1 beta <- 1 stancodeH0 <- 'data { int<lower=1> n; // number of observations vector[n] y; // observations real<lower=0> alpha; real<lower=0> beta; real<lower=0> sigma2; } parameters { real<lower=0> tau2; // group-level variance vector[n] theta; // participant effects } model { target += inv_gamma_lpdf(tau2 | alpha, beta); target += normal_lpdf(theta | 0, sqrt(tau2)); target += normal_lpdf(y | theta, sqrt(sigma2)); } ' tf <- withr::local_tempfile(fileext = ".stan") writeLines(stancodeH0, tf) mod <- cmdstanr::cmdstan_model(tf, quiet = TRUE, force_recompile = TRUE) fitH0 <- mod$sample( data = list(y = y, n = n, alpha = alpha, beta = beta, sigma2 = sigma2), seed = 202, chains = 4, parallel_chains = 4, iter_warmup = 1000, iter_sampling = 50000, refresh = 0 ) #> Running MCMC with 4 parallel chains... #> #> Chain 3 finished in 0.8 seconds. #> Chain 2 finished in 0.8 seconds. #> Chain 4 finished in 0.8 seconds. #> Chain 1 finished in 1.1 seconds. #> #> All 4 chains finished successfully. #> Mean chain execution time: 0.9 seconds. #> Total execution time: 1.2 seconds. H0.bridge <- bridge_sampler(fitH0, silent = TRUE) print(H0.bridge) #> Bridge sampling estimate of the log marginal likelihood: -37.73301 #> Estimate obtained in 8 iteration(s) via method "normal". #### Expected output: ## Bridge sampling estimate of the log marginal likelihood: -37.53183 ## Estimate obtained in 5 iteration(s) via method "normal". ```

Exciting #rstats news for Bayesian model comparison: bridgesampling is finally ready to support cmdstanr, see screenshot. Help us by installing the development version of bridgesampling and letting us know if it works for your model(s): pak::pkg_install("quentingronau/bridgesampling#44")

02.09.2025 09:16 β€” πŸ‘ 27    πŸ” 10    πŸ’¬ 2    πŸ“Œ 1
Post image

We are done with the ninth Statistical Methods for Linguistics and Psychology (SMLP) summer school, Potsdam, Germany. The tenth edition is planned for 24-28 August 2026.

31.08.2025 08:00 β€” πŸ‘ 16    πŸ” 3    πŸ’¬ 0    πŸ“Œ 0

Honoured to receive two (!!) SAC highlights awards at #ACL2025 😁 (Conveniently placed on the same slide!)
With the amazing: @philipwitti.bsky.social, @gregorbachmann.bsky.social and @wegotlieb.bsky.social,
@cuiding.bsky.social, Giovanni Acampa, @alexwarstadt.bsky.social, @tamaregev.bsky.social

31.07.2025 07:41 β€” πŸ‘ 22    πŸ” 3    πŸ’¬ 0    πŸ“Œ 0
Sina Ahmadi receiving award.

Sina Ahmadi receiving award.

Congratulations to @sinaahmadi.bsky.social and co-authors for receiving an ACL 2025 Outstanding Paper Award for PARME: Parallel Corpora for Low-Resourced Middle Eastern Languages!

aclanthology.org/2025.acl-lon...

30.07.2025 15:10 β€” πŸ‘ 14    πŸ” 6    πŸ’¬ 0    πŸ“Œ 0
Shravan Vasishth's Intro Bayes course home page

Next week onwards, I'm teaching a five-day introductory course on Bayesian Data Analysis in Gent. Newly recorded video lectures to accompany the course are now online: vasishth.github.io/LecturesIntr...

10.07.2025 19:32 β€” πŸ‘ 13    πŸ” 5    πŸ’¬ 0    πŸ“Œ 0
Terminology Translation Task

πŸ“£Take part in 3rd Terminology shared task @WMT!πŸ“£
This year:
πŸ‘‰5 language pairs: EN->{ES, RU, DE, ZH},
πŸ‘‰2 tracks - sentence-level and doc-level translation,
πŸ‘‰authentic data from 2 domains: finance and IT!

www2.statmt.org/wmt25/termin...

Don't miss an opportunity - we only do it once in two years😏

06.06.2025 15:54 β€” πŸ‘ 3    πŸ” 2    πŸ’¬ 0    πŸ“Œ 2

Some of my colleagues are already very excited about this work!

04.06.2025 17:58 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Inline citations with only first author name, or first two co-first author names.

Inline citations with only first author name, or first two co-first author names.

If you're finishing your camera-ready for ACL or ICML and want to cite co-first authors more fairly, I just made a simple fix to do this! Just add $^*$ to the authors' names in your bibtex, and the citations should change :)

github.com/tpimentelms/...

29.05.2025 08:53 β€” πŸ‘ 85    πŸ” 23    πŸ’¬ 4    πŸ“Œ 0
Video thumbnail

πŸ‘€ πŸ“– Big news! πŸ“– πŸ‘€
Happy to announce the release of the OneStop Eye Movements dataset! πŸŽ‰ πŸŽ‰
OneStop is the product of over 6 years of experimental design, data collection and data curation.
github.com/lacclab/OneS...

29.05.2025 11:12 β€” πŸ‘ 8    πŸ” 3    πŸ’¬ 1    πŸ“Œ 0

I am so proud of this work. My first NLP experience. I learned a lot from this amazing team!!!!

14.05.2025 16:56 β€” πŸ‘ 3    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Preview
Using Information Theory to Characterize Prosodic Typology: The Case of Tone, Pitch-Accent and Stress-Accent This paper argues that the relationship between lexical identity and prosody -- one well-studied parameter of linguistic variation -- can be characterized using information theory. We predict that lan...

β­πŸ—£οΈNew preprint out: πŸ—£οΈβ­ β€œUsing Information Theory to Characterize Prosodic Typology: The Case of Tone, Pitch-Accent and Stress-Accent” with @cuiding.bsky.social , Giovanni Acampa, @tpimentel.bsky.social , @alexwarstadt.bsky.social ,Tamar Regev: arxiv.org/abs/2505.07659

13.05.2025 13:21 β€” πŸ‘ 11    πŸ” 5    πŸ’¬ 1    πŸ“Œ 2

The biggest advantage of MoTR over alternative methods is that it is very cheap and fast compared to its alternatives, while still provides very sensitive and accurate measurements. Our online data collection from 60 Russian speakers took less than 24 hours!!

07.03.2025 22:26 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Video thumbnail

Participants must move their mouse over the text to reveal the words, while their cursor movements are recorded (similar to how eye movements are recorded in eye tracking). See below for an example MoTR trial.

07.03.2025 22:26 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

2- We use MoTR (Mouse Tracking for Reading) as a cheaper but reliable alternative to in-person eye tracking. MoTR is a new experimental tool, where participants screen is blurred except for a small region around the tip of the mouse pointer

07.03.2025 22:22 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
OSF

Excited to share our preprint "Using MoTR to probe agreement errors in Russian"! w/ Metehan Oğuz, @wegotlieb.bsky.social, Zuzanna Fuchs Link: osf.io/preprints/ps...
1- We provide moderate evidence that processing of agreement errors is modulated by agreement type (internal vs external agr.)

07.03.2025 22:21 β€” πŸ‘ 3    πŸ” 1    πŸ’¬ 1    πŸ“Œ 0

@cuiding is following 20 prominent accounts