Arman Behrad's Avatar

Arman Behrad

@armanbehrad.bsky.social

Computational Neuroscience | PhD. candidate at @cmc-lab.bsky.social | Fine Arts, Music

138 Followers  |  186 Following  |  36 Posts  |  Joined: 11.11.2024  |  2.0342

Latest posts by armanbehrad.bsky.social on Bluesky


Convocatorias - Fundaciรณn Ramรณn Areces

For Spanish researchers interested in postdoc positions: my lab at Amsterdam is looking for candidates to apply for a Ramon Areces postdoctoral fellowship, to work for 2 years on compneuro and digital brains. Deadline Feb 23. Please spread the word! More info: www.fundacionareces.es/fundacionare...

03.02.2026 10:51 โ€” ๐Ÿ‘ 10    ๐Ÿ” 5    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Built a domain-agnostic peak detection algorithm and now hunting for datasets with known/annotated peaks to test it on ๐Ÿ‘€
Any domain worksโ€”signals,bio,astro,finance, spectroscopy, etc.
Got data or know a benchmark? Would love pointers ๐Ÿ™Œ

#SignalProcessing #DataScience #TimeSeries #OpenData #Research

28.01.2026 15:18 โ€” ๐Ÿ‘ 4    ๐Ÿ” 2    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

This book is a wonderful, synthetic and richly illustrated journey through the natural history of the vertebrate brain ๐Ÿคฉ

A big thank you to the authors ๐Ÿ™

"A major theme in the evolution of the telencephalon has been the emergence of novel pathways...

1/2

17.01.2026 09:05 โ€” ๐Ÿ‘ 96    ๐Ÿ” 25    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 2

This work couldnโ€™t have happened without my wonderful collaborators: @neurostrow.bsky.social and Ila Fiete (master minds behind the original DSA), @mmdtaha.bsky.social, Christian Beste, and @neuroprinciplist.bsky.social ; and support from the @cmc-lab.bsky.social .

08.01.2026 16:07 โ€” ๐Ÿ‘ 5    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

There are also other fantastic tools around for comparing circuits/brains/models like the RSA developed by Nikolaus Kriegeskorte and many others (e.g., see the great work www.biorxiv.org/content/10.1... by @jbarbosa.org , and @itsneuronal.bsky.social )

08.01.2026 16:07 โ€” ๐Ÿ‘ 4    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Related: @neurostrow.bsky.social thread with @wtredman.bsky.social & Igor Mezic on extending dynamical-similarity ideasโ€”an exciting direction for future DSA-style methods: bsky.app/profile/neur...

08.01.2026 16:07 โ€” ๐Ÿ‘ 3    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

We also built 2 simple nonlinear systems (A, B) with identical eigenvalues but different eigenvectors. As expected, Wasserstein-based kwDSA struggles to separate them. All 3 fastDSA variants reliably distinguish A vs B (represented w/ MDS).

08.01.2026 16:07 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

Under strong noise, we repeat the transformation tests (Plus kernelDMD+Wasserstein distance (kwDSA)). kwDSA highlights a key pitfall: relying mainly on eigenvalues (ignoring eigenvectors) can miss fine dynamical differences. fastDSA alternatives remain sensitive and perform well even at high noise.

08.01.2026 16:07 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

Next we tested sensitivity to dynamical change by morphing a ring attractor into a line attractor (same model). fastDSA distances jump at the ringโ†”line transition, capturing topology changeโ€”unlike Procrustesโ€”while being way faster than DSA.

08.01.2026 16:07 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

We first tested whether fastDSA is invariant to purely geometric deformationsโ€”changes that preserve the same underlying dynamics and attractor topology. All 3 fastDSA variants are faithful to dynamics and remain stable across geometric deformations, while being computationally more efficient.

08.01.2026 16:07 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

With different forms of noise, we showed how well the rank estimate supports DMD reconstruction. Across noise levels, the method detects the rank at the knee point automatically (with no tuning)

08.01.2026 16:07 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

Our method efficiently estimates the rank of delay embeddings of a dynamical system. For example, on Lorenz trajectories projected to higher dimensions, the estimated order matches the true latent rank and aligns with AIC/BIC baselines.

08.01.2026 16:07 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

We made DSA up to 150 times faster ๐Ÿคฏ by introducing 3 new optimization objectives and solvers to speed up the DSA alignment step. Instead of enforcing exact orthogonality at every iteration, we use faster formulations that approximate or penalize the constraint.

08.01.2026 16:07 โ€” ๐Ÿ‘ 11    ๐Ÿ” 3    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

The original dynamic similarity analysis (DSA) developed by @neurostrow.bsky.social and Ila Fiete is a powerful method to compare trajectories of (nonlinear) neural dynamics between different datasets and models: arxiv.org/abs/2306.10168

08.01.2026 16:07 โ€” ๐Ÿ‘ 6    ๐Ÿ” 2    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

Wanna compare dynamics across neural data, RNNs, or dynamical systems? We got a fast and furious method๐ŸŽ๏ธ
The 1st preprint of my PhD ๐Ÿฅณ fast dynamical similarity analysis (fastDSA):
๐Ÿ“œ: arxiv.org/abs/2511.22828
๐Ÿ’ป: github.com/CMC-lab/fast...
Iโ€™ll be @cosynemeeting.bsky.social - happy to chat ๐Ÿ˜‰

08.01.2026 16:07 โ€” ๐Ÿ‘ 114    ๐Ÿ” 35    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 4
Post image

Way back in 1999, Kenji Doya sketched a big picture theory of the brain:

1๏ธโƒฃThe cerebellum is specialized for supervised learning
2๏ธโƒฃThe basal ganglia are for reinforcement learning
3๏ธโƒฃThe cerebral cortex is for unsupervised learning

How does this hold up in 2026? www.sciencedirect.com/science/arti...

01.01.2026 15:36 โ€” ๐Ÿ‘ 37    ๐Ÿ” 10    ๐Ÿ’ฌ 3    ๐Ÿ“Œ 1
Preview
From sensory to perceptual manifolds: The twist of neural geometry The brain uses geometric twists to expand neural dimensionality, thus untangling perception from sensation.

From sensory to perceptual manifolds: The twist of neural geometry
doi.org/10.1126/scia...
#neuroscience

26.12.2025 22:07 โ€” ๐Ÿ‘ 48    ๐Ÿ” 12    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1

Thank you for having me on BrainInspired, Paul @braininspired.bsky.social! It was such an honor to be on my favorite showโ€”a rare place where we can leisurely talk about manifolds, latent circuits, power laws, and other esoteric ideas, and still be taken seriously in knowing they are all real.

05.12.2025 04:42 โ€” ๐Ÿ‘ 57    ๐Ÿ” 14    ๐Ÿ’ฌ 3    ๐Ÿ“Œ 0
Post image

๐Ÿšจnew work with the dream team @danakarca.bsky.social @loopyluppi.bsky.social @fatemehhadaeghi.bsky.social @stuartoldham.bsky.social @duncanastle.bsky.social
We use game theory and show the brain is not optimally wired for communication and thereโ€™s more to its story:
www.biorxiv.org/content/10.6...

15.12.2025 08:01 โ€” ๐Ÿ‘ 60    ๐Ÿ” 26    ๐Ÿ’ฌ 4    ๐Ÿ“Œ 0

Congratulations. ๐ŸŽŠ

10.11.2025 20:52 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

Our next paper on comparing dynamical systems (with special interest to artificial and biological neural networks) is out!! Joint work with @annhuang42.bsky.social , as well as @satpreetsingh.bsky.social , @leokoz8.bsky.social , Ila Fiete, and @kanakarajanphd.bsky.social : arxiv.org/pdf/2510.25943

10.11.2025 16:16 โ€” ๐Ÿ‘ 70    ๐Ÿ” 24    ๐Ÿ’ฌ 4    ๐Ÿ“Œ 5
Bernstein Conference 2025 Conference Abstracts

If you are @ #BernsteinConference we have 4 posters, thread๐Ÿ‘‡
P II 25, Tue 18โ€“19:30: abstracts.g-node.org/conference/B...
P IV 5, Wed 14-15:30: abstracts.g-node.org/conference/B...
P II 25, Tue 18-19:30: abstracts.g-node.org/conference/B...
P I 11, Tue 16:30-18: abstracts.g-node.org/conference/B...

30.09.2025 13:23 โ€” ๐Ÿ‘ 12    ๐Ÿ” 5    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1
Post image

(4/4) How about a simulation of more naturalistic setting?

30.09.2025 20:54 โ€” ๐Ÿ‘ 2    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

(3/4)
Next: biological networks.
We applied UNITE to V4 activity (PSTH) from a monkey doing a visual cognitive task. ๐Ÿ’๐Ÿ‘๏ธ

30.09.2025 20:54 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

(2/4)
First test: an RNN solving a cognitive task.
UNITE identify state transitions without supervision. ๐Ÿ”

30.09.2025 20:54 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Bernstein Conference 2025 Conference Abstracts

How can we identify state transitions from neural data โ€” in an unsupervised way? (1/4)
๐Ÿ‘‰ Check out UNITE: Universal Neural-State Identification through Temporal Embeddings
๐Ÿ“… Oct 1 | #BernsteinConference
๐Ÿ“ Poster Session III, #14
abstracts.g-node.org/conference/B...

30.09.2025 20:54 โ€” ๐Ÿ‘ 4    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

(4/4)
Finally, we highlight cases where FastDSA outperforms other dynamical similarity metricsโ€”while remaining robust to noise.

29.09.2025 21:07 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

(3/4)
Next, we present experiments showing why geometrical methods fail.
Both DSA and FastDSA achieve similar resultsโ€”but FastDSA is 10โ€“15ร— faster.

29.09.2025 21:07 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

(2/4)
We first outline the general structure of the algorithm.

29.09.2025 21:07 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Bernstein Conference 2025 Conference Abstracts

Curious about similarity metrics?
What if we could capture dynamical similarity thatโ€™s noise-robust and computationally efficient? (1/4)
Check out Fast Dynamical Similarity Analysis
๐Ÿ“… 30 Sept | #BernsteinConference
๐Ÿ“ Poster Session I, #11

abstracts.g-node.org/conference/B...

29.09.2025 21:07 โ€” ๐Ÿ‘ 4    ๐Ÿ” 2    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1

@armanbehrad is following 20 prominent accounts