oldies but goodies from ๐ - now for #MicroSky
on ๐ by ๐ ๐ฎ๐ด๐๐ฒ๐ฟ๐ถ๐ฎ ๐จ๐ฃ๐ฉ/๐๐๐จ @MagteriaUPV on Sep 10, 2020
Here is our contribution to #InternationalMicroorganismDay A group of the magnetotactic bacteria MSR-1 ๐ฆ filled with nanomagnets (magnetosomes) ๐งฒ @femsmicro.bsky.social
27.03.2025 11:51 โ ๐ 19 ๐ 5 ๐ฌ 1 ๐ 0
What are those three white blobs, and why do we spend hours at our microscopes recording movies like this? ๐ง Take a look at this short article on the 'bead assay' - a simple yet powerful technique that helps us, and many others, uncover the secrets of the bacterial flagellar motor!
12.03.2025 14:59 โ ๐ 4 ๐ 1 ๐ฌ 0 ๐ 0
Thanks for publishing this, those experiments really are a lot of fun!
12.03.2025 14:35 โ ๐ 1 ๐ 0 ๐ฌ 0 ๐ 0
This raises some interesting questions: what sets the value of this limiting torque and how can we use this in our models of the flagellar motor? In which regime (saturated? Linear?) do cells typically swim in their typical ecological niche? (8/9)
09.10.2024 13:45 โ ๐ 0 ๐ 0 ๐ฌ 1 ๐ 0
As expected, the saturation at high PMF/torque became visible when we increased the viscosity of the medium 3.5 fold to mimic biological fluids: the swimming load was now equivalent to that of a 1 um bead and the swimming speed no longer increased with PMF at the highest PMF. (7/9)
09.10.2024 13:44 โ ๐ 0 ๐ 0 ๐ฌ 1 ๐ 0
This load is close to the threshold above which the PMF-speed relationship saturates at high PMF/high torque, meaning that cells swimming in low-viscosity buffer may experience this saturation, but only when fully energized. (6/9)
09.10.2024 13:44 โ ๐ 0 ๐ 0 ๐ฌ 1 ๐ 0
Graph in which the vertical axis is the normalized speed, varying between 0 and 1, and the horizontal axis is the concentration of butanol in the medium, varying between 0% and 1%. Butanol is used to decrease the PMF. Three datasets are presented: one shows the speeds of 0.5 um beads attached to individual motors. The second is the same for 0.75 um beads. The third is the normalized swimming speed recorded via differential dynamic microscopy. All speeds are normalized by the speed measured at 0% butanol. The three curves display speeds that decrease as the concentration of butanol increases. The 0.5 um curve decreases the fastest, and the 0.75 um curve the slowest. The swimming curve falls in between the two bead assay curves.
The first direct result is that our protocols allow us to estimate experimentally the mechanical load under which the flagellar motors operate in free-swimming E. coli, which is hard to compute theoretically. We find the load to be equivalent to that of a 0.6 um diameter bead.
09.10.2024 13:44 โ ๐ 0 ๐ 0 ๐ฌ 1 ๐ 0
We then wondered if this matters only to us flagellar motor aficionados who like to stick beads to bacteria, or if this has implications for swimming bacteria too. Short answer: it has! For this, we measured the average swimming speed of E. coli while changing PMF. (4/9)
09.10.2024 13:43 โ ๐ 0 ๐ 0 ๐ฌ 1 ๐ 0
To confirm our findings, we studied cells that had both a small bead and a large bead. This way, both motors were driven by the exact same PMF. Again, small bead (low torque) motors remained sensitive to PMF in all conditions, while large bead speeds saturated at high PMF. (3/9)
09.10.2024 13:42 โ ๐ 0 ๐ 0 ๐ฌ 1 ๐ 0
We attached beads of various sizes to FM of single cells, and measured their rotation speed while modifying the PMF. Motors attached to larger beads were much less sensitive to those changes, suggesting that the well-established PMF-speed linearity saturates at high torque. (2/9)
09.10.2024 13:41 โ ๐ 0 ๐ 0 ๐ฌ 1 ๐ 0
New preprint! We find the relationship between the flagellar motor (FM) speed and the proton motive force (PMF) to be nonlinear in E. coli, limited by the maximum torque that a motor can supply. Surprisingly, this max. torque is reachable physiologically. (1/9)
biorxiv.org/cgi/content/...
09.10.2024 13:40 โ ๐ 4 ๐ 2 ๐ฌ 1 ๐ 0
Assistant Professor at the Department of Computer Science, University of Liverpool.
https://lutzoe.github.io/
Microbial ecologist
https://www.fiererlab.org/
Associate Professor at University of Mons
Mechanobiology & Biomaterials group
https://www.cellmechanobiology.com
Schmidt AI in Science Postdoctoral Fellow at U. Chicago
theoretical & computational soft matter, biophysics, machine learning
jordanshivers.github.io
Generating data for the protein engineering revolution
PhD, Postdoc @ Piel Lab @institut_curie/Scita Lab @IFOM. ESPCI Engineer ๐ฌ๐ฅจ๐ฅ LโOrรฉal UNESCO Jeune Talent 2021. Cell Bio,biophysics,Bcell lover
Dad of two, Professor, Lister Research Fellow and Wellcome Investigator at the John Innes Centre. Interested in bacterial chromosome organization & segregation, plasmids, and phages.
www.tunglelab.org
Theoretical biophysicist at Uni Gรถttingen @uni-goettingen.de, Max Planck School Matter to Life @mattertolife.bsky.social
physicist @ CNRS & Sorbonne Universitรฉ, Paris โข statistical & chemical physics, soft matter, theory & simulations
Postdoc @GeorgiaTech. Previously @SyracuseU and @Penn. PhD @RiceUniversity. Soft matter and biophysics theory
Assoc. Prof @polymtl @transmedtech
Cell biophysics, superres microscopy, & curious-methods enthusiast.
We have open positions www.WeissLab.ca
Biomembranes, synthetic biology and neuromorphic engineering. W1 Professor University of Kiel CAU Bio-inspired Computation.
http://www.bioinsp.tf.uni-kiel.de/
Microbial evangelist and podcaster. Husband, father, moderate. Associate Professor at the University of Puget Sound, facing retirement in June of 2026. Looking for what is next that sparks microbial joy.
Lecturer in Biological Physics at King's College London @kingsnmes.bsky.social
Previously at Institute of Science and Technology Austria, UCL and Universitรฉ Paris-Saclay.
Ion channels, biophysics, chemical biology, protein engineering and molecular neuroscience; Professor at University of Copenhagen; www.theplesslab.com
Theoretical and computational biophysicist at Carnegie Mellon University. Loves lipid membranes, music, and art. (he/him) ๐ฉ๐ช๐บ๐ธ
I love science and discovering new things.
Assistant professor at the University of Amsterdam. In love with fluids ๐ง, Worms ๐ชฑ, and ๐ค. Ig-Nobel 2024 for racing sober and drunk worms.
Group website: https://www.deb-lab.com/
Biological algorithms of cell motility and pattern formation in active living matter, using theoretical physics https://physics-of-life.tu-dresden.de/friedrich