Sepideh Mamooler@ACLπŸ‡¦πŸ‡Ή's Avatar

Sepideh Mamooler@ACLπŸ‡¦πŸ‡Ή

@smamooler.bsky.social

PhD Candidate at @icepfl.bsky.social | Ex Research Intern@Google DeepMind πŸ‘©πŸ»β€πŸ’» Working on multi-modal AI reasoning models in scientific domains https://smamooler.github.io/

42 Followers  |  44 Following  |  14 Posts  |  Joined: 10.12.2024  |  1.7454

Latest posts by smamooler.bsky.social on Bluesky

Preview
EPFL NLP Postdoctoral Scholar Posting - Swiss AI LLMs The EPFL Natural Language Processing (NLP) lab is looking to hire a postdoctoral researcher candidate in the area of multilingual LLM design, training, and evaluation. This postdoctoral position is as...

The EPFL NLP lab is looking to hire a postdoctoral researcher on the topic of designing, training, and evaluating multilingual LLMs:

docs.google.com/document/d/1...

Come join our dynamic group in beautiful Lausanne!

04.08.2025 15:54 β€” πŸ‘ 21    πŸ” 12    πŸ’¬ 0    πŸ“Œ 1

Also: not the usual #NLProc topic, but if you're working on genetic AI models, I’d love to connect! I'm exploring the intersection of behavioral genomics and multi-modal AI for behavior understanding.

26.07.2025 15:13 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0
Preview
PICLe: Pseudo-Annotations for In-Context Learning in Low-Resource Named Entity Detection In-context learning (ICL) enables Large Language Models (LLMs) to perform tasks using few demonstrations, facilitating task adaptation when labeled examples are hard to obtain. However, ICL is sensiti...

Excited to attend #ACL2025NLP in Vienna next week!
I’ll be presenting our #NAACL2025 paper, PICLe, at the first workshop on Large Language Models and Structure Modeling (XLLM) on Friday. Come by our poster if you’re into NER and ICL with pseudo-annotation.
arxiv.org/abs/2412.11923

26.07.2025 15:11 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 1
Post image

🚨 New Preprint!!

Thrilled to share with you our latest work: β€œMixture of Cognitive Reasoners”, a modular transformer architecture inspired by the brain’s functional networks: language, logic, social reasoning, and world knowledge.

1/ πŸ§΅πŸ‘‡

17.06.2025 15:07 β€” πŸ‘ 24    πŸ” 7    πŸ’¬ 1    πŸ“Œ 1

🌍 ✨ Introducing MELT Workshop 2025: Multilingual, Multicultural, and Equitable Language Technologies
A workshop on building inclusive, culturally-aware LLMs!

🧠 Bridging the language divide in AI
πŸ“… October 10, 2025 Co-located with @colmweb.org
πŸ”— melt-workshop.github.io

#MeltWorkshop2025

04.06.2025 14:53 β€” πŸ‘ 3    πŸ” 2    πŸ’¬ 0    πŸ“Œ 1

Super excited to share that our paper "A Logical Fallacy-Informed Framework for Argument Generation" has received the Outstanding Paper Award πŸŽ‰πŸŽ‰ at NAACL 2025!

Paper: aclanthology.org/2025.naacl-l...
Code: github.com/lucamouchel/...

#NAACL2025

01.05.2025 13:41 β€” πŸ‘ 4    πŸ” 2    πŸ’¬ 0    πŸ“Œ 0
Preview
PICLe: Pseudo-Annotations for In-Context Learning in Low-Resource Named Entity Detection In-context learning (ICL) enables Large Language Models (LLMs) to perform tasks using few demonstrations, facilitating task adaptation when labeled examples are hard to obtain. However, ICL is sensiti...

paper: arxiv.org/abs/2412.11923
code: github.com/sMamooler/PI...

01.05.2025 08:39 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Couldn't attend @naaclmeeting.bsky.social in person as I didn't get a visa on time πŸ€·β€β™€οΈ My colleague @mismayil.bsky.social will present PICLe on my behalf today, May 1st, at 3:15 pm in RUIDOSO. Feel free to reach out if you want to chat more!

01.05.2025 08:39 β€” πŸ‘ 2    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

Check out VinaBench, our new #CVPR2025 paper. We introduce a benchmark for faithful and consistent visual narratives.

Paper: arxiv.org/abs/2503.20871
Project Page: silin159.github.io/Vina-Bench/

01.04.2025 13:56 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

Excited to share that we will present PICLe at @naaclmeeting.bsky.social main conference!

10.03.2025 10:21 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 0    πŸ“Œ 1
Post image

🚨 New Preprint!!

LLMs trained on next-word prediction (NWP) show high alignment with brain recordings. But what drives this alignmentβ€”linguistic structure or world knowledge? And how does this alignment evolve during training? Our new paper explores these questions. πŸ‘‡πŸ§΅

05.03.2025 15:58 β€” πŸ‘ 59    πŸ” 24    πŸ’¬ 1    πŸ“Œ 2

Lots of great news out of the EPFL NLP lab these last few weeks. We'll be at @iclr-conf.bsky.social and @naaclmeeting.bsky.social in April / May to present some of our work in training dynamics, model representations, reasoning, and AI democratization. Come chat with us during the conference!

25.02.2025 09:18 β€” πŸ‘ 25    πŸ” 12    πŸ’¬ 1    πŸ“Œ 0
Post image

🚨 New Paper!

Can neuroscience localizers uncover brain-like functional specializations in LLMs? πŸ§ πŸ€–

Yes! We analyzed 18 LLMs and found units mirroring the brain's language, theory of mind, and multiple demand networks!

w/ @gretatuckute.bsky.social, @abosselut.bsky.social, @mschrimpf.bsky.social
πŸ§΅πŸ‘‡

19.12.2024 15:06 β€” πŸ‘ 105    πŸ” 27    πŸ’¬ 2    πŸ“Œ 5

πŸ™ Amazing collaboration with my co-authors and advisors
@smontariol.bsky.social, @abosselut.bsky.social,
@trackingskills.bsky.social

17.12.2024 14:51 β€” πŸ‘ 1    πŸ” 0    πŸ’¬ 0    πŸ“Œ 0

πŸ“– Check out the full paper here: arxiv.org/pdf/2412.11923

17.12.2024 14:51 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸ“Š We evaluate PICLe on 5 biomedical NED datasets and find:
✨ With zero human annotations, PICLe outperforms ICL in low-resource settings, where limited gold examples can be used as in-context demonstrations!

17.12.2024 14:51 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

βš™οΈ How does PICLe work?
1️⃣ LLMs annotate demonstrations in a zero-shot first pass.
2️⃣ Synthetic demos are clustered, and in-context sets are sampled.
3️⃣ Entity mentions are predicted using each set independently.
4️⃣ Self-verification selects the final predictions.

17.12.2024 14:51 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

πŸ’‘ Building on our findings, we introduce PICLe: a framework for in-context learning powered by noisy, pseudo-annotated demonstrations. πŸ› οΈ No human labels, no problem! πŸš€

17.12.2024 14:51 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸ“Š Key finding: A semantic mapping between demonstration context and label is essential for in-context task transfer. BUT even weak semantic mappings can provide enough signal for effective adaptation in NED!

17.12.2024 14:51 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0

πŸ” It’s unclear which demonstration attributes enable in-context learning in tasks that require structured, open-ended predictions (such as NED).
We use perturbation schemes that create demonstrations with varying correctness levels to analyze key demonstration attributes.

17.12.2024 14:51 β€” πŸ‘ 0    πŸ” 0    πŸ’¬ 1    πŸ“Œ 0
Post image

πŸš€ Introducing PICLe: a framework for in-context named-entity detection (NED) using pseudo-annotated demonstrations.
🎯 No human labeling neededβ€”yet it outperforms few-shot learning with human annotations!
#AI #NLProc #LLMs #ICL #NER

17.12.2024 14:51 β€” πŸ‘ 12    πŸ” 8    πŸ’¬ 1    πŸ“Œ 1

@smamooler is following 20 prominent accounts