Carlos Poses's Avatar

Carlos Poses

@carlosgposes.bsky.social

PhD candidate at UMC Utrecht. Causal inference, real world evidence

56 Followers  |  117 Following  |  15 Posts  |  Joined: 06.01.2024  |  2.0632

Latest posts by carlosgposes.bsky.social on Bluesky

Hello, Bluesky! We are ODISSEI Social Data Science Team, also known as SoDa. This is our new official Bluesky account and we would love to interact more with you. ๐Ÿ‘‹

We have a mission of ๐—ต๐—ฒ๐—น๐—ฝ๐—ถ๐—ป๐—ด ๐—ฟ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต๐—ฒ๐—ฟ๐˜€ ๐˜„๐—ถ๐˜๐—ต ๐—ฑ๐—ฎ๐˜๐—ฎ ๐—ถ๐—ป๐˜๐—ฒ๐—ป๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฎ๐—ป๐—ฑ ๐—ฐ๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฟ๐—ฒ๐˜€๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต. ๐Ÿค

30.10.2025 10:49 โ€” ๐Ÿ‘ 6    ๐Ÿ” 4    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Dito isto, o que si parece รฉ que ningรบn deles participarรก do goberno.

30.10.2025 15:22 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Estase dando asรญ moito esta informaciรณn, pero a realidade รฉ mรกis complicada. Hai 3 partidos de extrema dereita no parlamento. O mรกis grande deixouse un tercio dos votos, pero os outros dous subiron moito. De feito ,a extrema dereita ten 1 escano mรกis agora dos que tiรฑa antes das elecioรณn.

30.10.2025 15:19 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image Post image

Onte houbo elecciรณns en ๐Ÿ‡ณ๐Ÿ‡ฑ e no fragmentado escenario polรญtico destaca un partido pola sรบa estabilidade.

O SGP que representa as facciรณn mรกis ortodoxas e conservadoras do calvinismo concentradas no cinto bรญblico do paรญs obtivo, como รฉ habitual, 3 deputados.

30.10.2025 08:01 โ€” ๐Ÿ‘ 2    ๐Ÿ” 3    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1
Post image

Espaรฑa ya estรก a la cabeza de Europa en porcentaje de estudiantes en universidades privadas. Solo le superan tres paรญses minรบsculos (Chipre, Malta y Montenegro) y dos del Este (Hungrรญa y Polonia).

A nadie parece preocuparle la transformaciรณn estructural que esta tendencia supone.

26.10.2025 11:44 โ€” ๐Ÿ‘ 354    ๐Ÿ” 326    ๐Ÿ’ฌ 19    ๐Ÿ“Œ 19
In 1916 the BMJ published an article about the work done by James Shearer, an American physician working in the British Army as a sergeant (because he had no British qualification). He had described a
"delineator" which was better than x rays for portraying gunshot wounds. This caused a sensation and a lot of interest โ€” but on investigation the work was found to have been invented. The BMJ published a retraction, but Shearer was tried by court martial and sentenced to death by firing squad.

In 1916 the BMJ published an article about the work done by James Shearer, an American physician working in the British Army as a sergeant (because he had no British qualification). He had described a "delineator" which was better than x rays for portraying gunshot wounds. This caused a sensation and a lot of interest โ€” but on investigation the work was found to have been invented. The BMJ published a retraction, but Shearer was tried by court martial and sentenced to death by firing squad.

Next time an institution tells you how seriously it takes research misconduct, ask them if it's *this* seriously. www.bmj.com/content/297/...

13.10.2025 20:12 โ€” ๐Ÿ‘ 640    ๐Ÿ” 234    ๐Ÿ’ฌ 17    ๐Ÿ“Œ 21

Looking forward to the development of fourthly robust, fifthly robust and why not twenty-seventhly robust estimators to keep up with

09.10.2025 10:52 โ€” ๐Ÿ‘ 3    ๐Ÿ” 1    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Image of R code. To reproduce:

library(ggplot2)
library(dplyr)

library(mice, warn.conflicts = FALSE)
 
imp <- mice(nhanes, m = 5, maxit = 5, seed = 1, 
            ignore = rep(c(FALSE, TRUE), c(20, 5)), 
            print = FALSE)
 
impdats <- complete(imp, "all")
 
train <- lapply(impdats, function(dat) subset(dat, !imp$ignore))
test <- lapply(impdats, function(dat) subset(dat, imp$ignore))
 
fits <- lapply(train, function(dat) lm(age ~ bmi + hyp + chl, data = dat))
preds <- predict_mi(object = fits, newdata = test, pool = TRUE, interval = "prediction")
 
preds
 
preds %>% 
  as.data.frame() %>% 
  mutate(case = 1:nrow(preds),
         y = test[[1]]$age) %>% 
  ggplot(aes(x = fit, y = case, col = rowSums(is.na(nhanes[imp$ignore,]))>0)) +
  geom_point() +
  geom_errorbar(aes(xmin = lwr, xmax = upr)) +
  theme_minimal() +
  scale_color_manual(values = mice::mdc(1:2), labels = c("observed", "missing")) +
  theme(legend.title = element_blank(),
        legend.position = "bottom") +
  labs(x = "prediction",
       title = "Pooled prediction intervals")

Image of R code. To reproduce: library(ggplot2) library(dplyr) library(mice, warn.conflicts = FALSE) imp <- mice(nhanes, m = 5, maxit = 5, seed = 1, ignore = rep(c(FALSE, TRUE), c(20, 5)), print = FALSE) impdats <- complete(imp, "all") train <- lapply(impdats, function(dat) subset(dat, !imp$ignore)) test <- lapply(impdats, function(dat) subset(dat, imp$ignore)) fits <- lapply(train, function(dat) lm(age ~ bmi + hyp + chl, data = dat)) preds <- predict_mi(object = fits, newdata = test, pool = TRUE, interval = "prediction") preds preds %>% as.data.frame() %>% mutate(case = 1:nrow(preds), y = test[[1]]$age) %>% ggplot(aes(x = fit, y = case, col = rowSums(is.na(nhanes[imp$ignore,]))>0)) + geom_point() + geom_errorbar(aes(xmin = lwr, xmax = upr)) + theme_minimal() + scale_color_manual(values = mice::mdc(1:2), labels = c("observed", "missing")) + theme(legend.title = element_blank(), legend.position = "bottom") + labs(x = "prediction", title = "Pooled prediction intervals")

Cool stuff!

Florian van Leeuwen and I implemented a prediction function in the #mice package that allows the incorporation of missing data uncertainty in a prediction interval.

The `predict_mi()` function is available in the current development version: github.com/amices/mice

#Rstats #statsky

29.09.2025 13:32 โ€” ๐Ÿ‘ 18    ๐Ÿ” 3    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 0
Post image

This only happens to you once

26.09.2025 19:39 โ€” ๐Ÿ‘ 21747    ๐Ÿ” 4250    ๐Ÿ’ฌ 350    ๐Ÿ“Œ 181

Haha. Glad we are on the same wavelength.

22.08.2025 11:24 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Hope itโ€™s not too late to recommend Infinite Powers, by @stevenstrogatz.com . Itโ€™s fun and very well written!

22.08.2025 11:16 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
How hazard ratios can mislead and why it matters in practice - European Journal of Epidemiology Hazard ratios are routinely reported as effect measures in clinical trials and observational studies. However, many methodological works have raised concerns about the interpretation of hazard ratios ...

A nice recent article on why you should abandon hazard ratios.

#statssky #episky

09.07.2025 22:43 โ€” ๐Ÿ‘ 77    ๐Ÿ” 20    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 2

A lot of the Target Trial Emulation framework is 'just' translating ideas from causal inference with observational data into ideas that are easier to digest and think through, even if you already know the hard stuff.

Now it's time to do some studying and apply these ideas to my own research!

30.06.2025 12:22 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

2. Communication is key in science. Just Robins 'g-formula' would conceptually cover a lot of what we did. But I doubt anybody who is presented with just the g-formula would be able to think clearly about their causal question in terms of treatment strategies, postrandomization events, and so forth.

30.06.2025 12:22 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Some thoughts after the course:
1. It is very important to think about treatment strategies and how they develop over time. Not commonly done, but often the inference of most interest in trials is about time-varying treatment strategies, not interventions at one time-point.

30.06.2025 12:22 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Last week I was lucky enough to participate in the Target Trial Emulation course at @causalab.bsky.social. It was a really nice experience! The instructors were excellent, as were the teaching materials, and they covered a great deal of content. I would really recommend it.

30.06.2025 12:22 โ€” ๐Ÿ‘ 4    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Looks good. Thanks!

30.06.2025 12:07 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

Can I ask, what would a good 'second' book be in your opinion?

30.06.2025 11:23 โ€” ๐Ÿ‘ 1    ๐Ÿ” 1    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
OpenSAFELY Schools A collaboration between the National Institute of Teaching and the Bennett Institute for Applied Data Science

"Have you thought about applying the @opensafely model, for data privacy and efficiency, to non-health data?"

YES WE HAVE

Behold the new... OpenSAFELY-Schools!!

schools.opensafely.org

17.06.2025 11:18 โ€” ๐Ÿ‘ 48    ๐Ÿ” 19    ๐Ÿ’ฌ 2    ๐Ÿ“Œ 3

Are you interested in improving the #interpretability, #robustness and #safety of current AI systems with #causality and #RL?

Apply to our PhD position in Amsterdam ๐Ÿšฒ๐ŸŒท๐Ÿ‡ณ๐Ÿ‡ฑ

Deadline: June 15

26.05.2025 08:32 โ€” ๐Ÿ‘ 11    ๐Ÿ” 6    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 2

Nice Thom!

20.05.2025 12:33 โ€” ๐Ÿ‘ 1    ๐Ÿ” 0    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Preview
Distribution Comparison Through Density Ratio Estimation Fast, flexible and user-friendly tools for distribution comparison through direct density ratio estimation. The estimated density ratio can be used for covariate shift adjustment, outlier-detection, c...

Very happy to announce that the R-package `densityratio` is on CRAN! It implements non-parametric distribution comparison through density ratio estimation, which is useful for sample selection bias adjustment, two-sample testing and more!
See thomvolker.github.io/densityratio for vignettes and info!

20.05.2025 12:17 โ€” ๐Ÿ‘ 4    ๐Ÿ” 2    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0

Still some spots available in our summer school on all things causal inference, 7-11 July in Utrecht! Discounts for those working in universities and non-profits, and affordable accommodation offered by @utrechtuniversity.bsky.social summer school!

28.04.2025 08:00 โ€” ๐Ÿ‘ 7    ๐Ÿ” 6    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Preview
HIRING! We offer 3 fully funded PhD positions to work on researchโ€ฆ | Maarten van Smeden HIRING! We offer 3 fully funded PhD positions to work on research methodology with experts in a great medical research environment. Interested in one of these projects? Send us your motivational let...

HIRING!

We offer 3 fully funded PhD positions to work on research methodology with experts in a great medical research environment.

More info: www.linkedin.com/feed/update/...

25.04.2025 06:31 โ€” ๐Ÿ‘ 30    ๐Ÿ” 25    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 1
Post image Post image

ยกPues ya estamos! ยกยกยกPrimera vez en la historia!!! La energรญa eรณlica y la solar cubren mรกs del 100% de la demanda en Espaรฑa peninsular. A las 11h05 el 100,09%. Todas las renovables, tambien rรฉcord, 115,14%

El sobrante se exporta y almacena.

17.04.2025 09:20 โ€” ๐Ÿ‘ 436    ๐Ÿ” 211    ๐Ÿ’ฌ 13    ๐Ÿ“Œ 12

Regresiรณn a la media :)

17.03.2025 14:26 โ€” ๐Ÿ‘ 0    ๐Ÿ” 0    ๐Ÿ’ฌ 1    ๐Ÿ“Œ 0
Post image

NEW PAPER

Really glad to see this one in print: the harm due to class imbalance corrections in prediction models developed using ML/AI

Excellently led by @alcarriero.bsky.social

onlinelibrary.wiley.com/doi/epdf/10....

27.01.2025 08:01 โ€” ๐Ÿ‘ 45    ๐Ÿ” 10    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0

๐ŸŽ‰ Happy New Year! ๐ŸŽ‰

Kickstart 2025 with exciting news! ๐ŸŒŸ
Registrations for EuroCIM 2025 are now OPEN! Secure your spot with early-bird discounts until March 1.

๐Ÿ”” Reminder: Abstract submissions close January 15, 23:00 CETโ€”donโ€™t miss your chance to contribute!

06.01.2025 10:20 โ€” ๐Ÿ‘ 6    ๐Ÿ” 6    ๐Ÿ’ฌ 0    ๐Ÿ“Œ 0
Post image

โœจ Se publica mi libro en inglรฉs: โ€˜Think Clearly: Eight Simple Rules to Succeed in the Data Ageโ€™ โœจ

ยกEstoy feliz!

Llega el 23 de enero con #PenguinUK y #Ebury. Y hay mรกs: habrรก ediciones en checo, turco, coreano y japonรฉs ๐Ÿ‘‡

05.01.2025 10:29 โ€” ๐Ÿ‘ 94    ๐Ÿ” 16    ๐Ÿ’ฌ 5    ๐Ÿ“Œ 4

@carlosgposes is following 20 prominent accounts